收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

遥感影像稀疏表示中的字典学习算法及其应用

李涛  
【摘要】:稀疏表示理论是数字信号处理领域一个基础而关键的问题,尤其在数据量巨大的高分辨率遥感影像处理领域,稀疏表示方法能够从复杂庞大的数据中分离出影像的主要特性,从而非常有利于影像的后续应用。基于稀疏表示的图像处理技术在遥感影像分类、编码和融合等方面都有广泛的应用,是目前各领域关注和研究的热点。但由于高分辨率遥感影像地物分布的复杂性以及不同的应用背景,使用一个统一的过完备字典用于解决所有遥感影像的稀疏表示效率是十分低下的,同时,对于不同的应用,例如影像分类和编码,需要不同约束类型的过完备字典。因此,如何设计高效的过完备字典应用于高分辨率遥感影像的稀疏表示,是一个非常有意义并且有难度的研究课题。 针对稀疏表示理论中过完备字典的研究现状及发展趋势,论文致力于高分辨率影像中重构字典和判别字典学习算法的研究,并且应用于影像的地物分类和编码。在现有的稀疏表示理论和字典学习方法的基础之上,本文结合图像滤波、边缘分割以及目标函数优化等技术,讨论了重构字典的稀疏性能和对遥感影像边缘、纹理和几何特征的保持性,以及判别字典系数矩阵的可分性,进而提出了基于图层分割的重构字典学习算法和基于图层分割的判别字典学习算法,并且应用于高分辨率遥感影像的分类和编码。本文的主要工作概括如下: 针对于图像重构应用的稀疏表示,提出了一种基于分层的重构字典学习算法。该算法为了减少遥感影像边缘、纹理等高频信息失真,把图像分为边缘高频层和剩余低频层表示。在边缘高频层的原子学习过程中,采用母函数和几何变换来生成边缘层原子样本,剩余层直接使用图像样本训练字典原子。此外,为了改进算法的时间复杂度,字典学习过程中使用改进的奇异值分解和正交匹配追踪算法训练联合字典。由于基于分层的联合字典中包含边缘相关的原子,因此,重构后图像的纹理、几何特征具有很好的保真性。 针对于高分辨率遥感影像的地物分类,提出了一种基于分层的判别字典学习算法,该算法是在基于图层分割的重构字典学习算法的基础上,在字典学习目标函数中加入了稀疏系数的可分性约束,并且对约束函数进行简化,使目标函数的重构误差约束项和系数可分性约束项形式一致,从而方便使用传统的K-SVD算法对字典学习的目标函数优化求解。对城区、森林、沙漠、农田和水体等五类遥感影像进行稀疏编码的实验结果表明,该算法相对于其它经典的判别字典学习算法能够使稀疏表示后的系数具有更强的可分性,并且字典结构较为紧凑,规模相对较小。 在基于图层分割的判别字典学习算法的基础上,提出了一种基于稀疏表示的分类算法(SESRC算法)。SESRC算法在判别字典学习的目标函数中加入了分类误差约束,并且保持分类误差约束、稀疏系数可分性约束以及重构误差约束三项约束函数形式一致,因此,仍然可以使用K-SVD算法求解分类器参数。SESRC算法在字典学习的同时训练出分类器,无需先稀疏编码然后学习分类器。与其它的判别字典以及传统的纹理分类算法相比,无论在分类时间上还是分类精度上,SESRC算法都具有一定优势。 最后,结合高分辨率遥感影像的编码需求,提出了一种基于地物分类的遥感影像编码方法。该方法先对遥感影像进行地物分类,然后对每一类影像独立编码。根据信道容量和不同类别地物影像的质量需求,使用信源编码的率失真定理推算出每类地物影像的近似码率,然后对每类地物影像定比压缩。同时,文中给出了两种地物分类编码的实例方案。此外,针对星上编码的应用需求,构建了一种遥感影像压缩质量预测方法。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 陈思宝;赵令;罗斌;;局部保持的稀疏表示字典学习[J];华南理工大学学报(自然科学版);2014年01期
2 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期
3 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期
4 张佳宇;彭力;;基于联合动态稀疏表示方法的多图像人脸识别算法[J];江南大学学报(自然科学版);2014年03期
5 查长军;孙南;张成;韦穗;;基于稀疏表示的特定目标识别[J];吉林大学学报(工学版);2013年01期
6 朱启兵;杨宝;黄敏;;基于核映射稀疏表示分类的轴承故障诊断[J];振动与冲击;2013年11期
7 王国权;张扬;李彦锋;王丽芬;马晓梅;;一种基于稀疏表示的图像去噪算法[J];工业仪表与自动化装置;2013年05期
8 耿耀君;张军英;;一种基于投影稀疏表示的基因选择方法[J];哈尔滨工程大学学报;2011年08期
9 翟懿奎;甘俊英;徐颖;曾军英;;快速稀疏表示指背关节纹识别及其并行实现[J];吉林大学学报(工学版);2012年S1期
10 詹永照;张珊珊;成科扬;;基于非线性可鉴别的稀疏表示视频语义分析方法[J];江苏大学学报(自然科学版);2013年06期
11 李洪均;谢正光;胡伟;王伟;;字典原子优化的图像稀疏表示及其应用[J];东南大学学报(自然科学版);2014年01期
12 贾旭;崔建江;薛定宇;刘晶;;基于手背静脉图像多特征稀疏表示的身份识别[J];仪器仪表学报;2011年10期
13 梁锐华;成礼智;;基于小波域字典学习方法的图像双重稀疏表示[J];国防科技大学学报;2012年04期
14 侯跃恩;李伟光;容爱琼;叶国强;;融合背景信息的分块稀疏表示跟踪算法[J];华南理工大学学报(自然科学版);2013年08期
15 查长军;韦穗;杨海蓉;丁大为;;基于稀疏表示的多类融合样本中特定目标识别[J];吉林大学学报(工学版);2014年03期
16 廖灵芝;;基于简单细胞响应稀疏性的图像稀疏表示模型[J];武汉理工大学学报;2010年16期
17 杨南海;桑媛媛;赫然;王秀坤;;基于非负稀疏表示的标签繁殖算法[J];大连理工大学学报;2012年02期
18 施云惠;李倩;丁文鹏;尹宝才;;基于稀疏表示模型的图像解码方法[J];北京工业大学学报;2013年03期
19 邹建成;车冬娟;;信号稀疏表示方法研究进展综述[J];北方工业大学学报;2013年01期
20 肖良;戴斌;吴涛;方宇强;;基于字典学习与稀疏表示的非结构化道路分割方法[J];吉林大学学报(工学版);2013年S1期
中国重要会议论文全文数据库 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
中国硕士学位论文全文数据库 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978