三相两电平变换器传导电磁干扰的建模与抑制方法研究
【摘要】:随着基于脉宽调制的电力电子设备在能量转换场合的不断渗透,电力电子设备中高频、高速通断的开关器件给能量转换系统带来了愈发严重的传导电磁干扰(Electromegnetic Interference,EMI)问题。EMI问题不仅会延长设备的设计研发周期,同时还可能威胁系统的安全稳定运行。学术界和工业界对EMI问题的研究主要集中在EMI预测技术和EMI抑制技术两方面,虽然当前EMI相关研究已取得较大的进展,但依然存在诸多亟待解决的问题:在EMI预测技术方面,现有EMI预测方法无法同时满足预测精度、速度、收敛性等性能指标,极大地限制了EMI预测方法在工业领域的广泛应用;在EMI抑制技术方面,现有抑制方法难以实现高频段电磁干扰的经济、高效抑制,导致电力电子设备的电磁干扰发射难以在全频段满足电磁兼容标准。在此背景下,本文以目前应用最为广泛的三相两电平电力电子变换器为研究对象,深入分析了三相两电平变换器中共、差模电磁干扰的形成机理以及传导路径,并对当前EMI预测技术和抑制技术中的一些技术难点提出了相应的解决方法,本文主要的研究内容如下:1.本文深入剖析了典型三相两电平变换器中各有源关键部件和无源关键部件的物理结构特性,推导了各关键部件的高频等效模型,并利用阻抗测量和有限元计算等方法实现了各关键部件高频模型中杂散参数的精确提取。然后,基于各关键部件的高频模型,深入分析了变换器共、差模传导EMI的形成机理及传导路径,并最终建立了系统等效EMI模型,为电磁干扰的预测和抑制研究奠定了理论基础。2.本文提出了一种时频域混合EMI预测方法,以解决现有EMI预测技术无法快速精确地预测多频点振铃效应的问题。首先,分析了三相变换器中开关器件的动态开关过程,并进一步对动态开关过程中的多频点振铃效应的形成机理和影响因素展开了深入研究,基于上述研究,分别建立了共、差模干扰源的数学模型。然后,以所推导的干扰源模型为理论支撑,提出一种时频域混合EMI预测方法,该方法创新性地使用了一种时域干扰源合成电路以实现含变斜率梯形波、多频点振铃信息的干扰源的快速精确合成,并借助频域预测思路进一步加快了传导EMI的预测速度。最后,通过实验证明了时频域混合EMI预测方法能够显著提升现有EMI预测方法的预测性能。3.为了消除死区效应对有源EMI调制抑制方法的影响,本文提出了一种基于改进型H8拓扑的有源EMI调制抑制方法。首先,考虑H8变换器开关管的寄生电容,通过建立状态方程的方法分析了H8变换器在零矢量状态下的稳态共模电压。然后,基于所推导的共模电压数学模型,从拓扑结构和调制策略两个角度对传统H8变换器进行了改进。最后,通过仿真和实验验证了所提出的改进型H8有源EMI调制抑制方法能够有效消除死区效应的影响,实现了三相变换器进出零矢量状态时的零共模电压跳变,进而抑制了由共模电压跳变所引起的兆赫兹级共模传导电磁干扰。4.本文提出一种基于分相浮地散热器的无源EMI分频抑制策略,解决了无源EMI滤波器在兆赫兹级以上频段的性能难以达到抑制要求的问题。该策略的核心组成部分为分相浮地散热器无源EMI抑制方法。通过合理的参数设计,分相浮地散热器无源EMI抑制方法在不引入额外阻性损耗的条件下实现了干扰源高频振铃效应的完全抑制,同时,所提出的抑制方法能够有效阻断带任意负载的三相变换器高频共模干扰的传导路径。然后,基于分相浮地散热器无源EMI抑制方法,本文设计了无源EMI滤波器从而对分相浮地散热器无源EMI抑制方法未能完全解决的低频段EMI进行有效抑制。实验证明,通过较低的设计复杂度和制造成本,基于分相浮地散热器的EMI分频抑制策略能够实现十兆赫兹级频段范围内的传导EMI高效抑制,使三相变换器在全频段满足电磁兼容标准。论文深入揭示了三相两电平变换器中电磁干扰的形成机理,系统性地对现有电磁干扰相关技术中存在的难点问题进行了优化,并通过实验验证了所提出的改进方法的有效性,为未来相关工业应用提供了新的解决思路,具有较高的工程应用价值。