收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

中立型随机时滞系统的鲁棒H_∞控制和滤波器设计

陈贵词  
【摘要】: 现代控制理论自上世纪50年代诞生以来,得到了迅速发展,并且在许多领域取得了成功的应用.但是,现代控制理论在当前工业应用中也遇到了较大的困难.主要是因为在这些众多被控对象中,其动态特性一般都难以用精确的数学模型来描述,甚至有时能够得到精确的模型,但由于模型过于复杂,为了有效的进行分析和综合,我们要对系统进行简化处理.而最优控制和现代控制理论都是以精确的模型作为研究对象的,因此由简化后的系统进行分析和综合得到的控制器将难以达到预期的性能指标.因此,在系统建模时,需要考虑系统中经常遇到的时滞现象,不确定参数扰动以及随机因素等对系统的影响,即随机时滞系统的鲁棒H∞控制,也即设计相应的控制器使得随机闭环系统保持内部稳定和理想的性能要求. 本文主要研究了中立型随机时滞系统的鲁棒H∞控制和滤波器设计问题.针对几类中立型随机时滞系统,利用Lyapunov-Krasovskii泛函,时滞分割,自由权矩阵等时滞处理技巧,结合线性(非线性)矩阵不等式技术,建立了具有Markov跳跃的随机时滞系统的有界实引理,分别设计了随机动态输出反馈控制器和H∞滤波器,非脆弱鲁棒H∞控制器以及基于观测器的非脆弱鲁棒H∞控制器,时滞反馈鲁棒H∞控制器,得到了一些研究成果.本文的主要工作和贡献如下: 针对一类具有变时滞的中立型随机不确定系统,通过构造Lyapunov泛函,研究了随机闭环系统在无干扰输入和不确定满足可容许条件下的随机鲁棒镇定问题,以及在非零的外部干扰输入下,以半线性矩阵不等式(BMI)的形式给出了系统满足鲁棒H∞性能指标的随机动态输出反馈控制器的设计方法,并利用分支切割算法给出了半线性矩阵不等式的可解方法.最后针对该类系统,用类似的方法,以线性矩阵不等式的形式,给出了全阶鲁棒H∞滤波器的设计方法. 给出了具有Markov跳跃的随机系统鲁棒H∞控制的定义,以及相应性能指标的一些数学描述.然后综合应用Doob鞅不等式,随机积分不等式,Markov链的遍历性,建立了随机Markov跳跃的有界实引理.利用该引理结合线性矩阵不等式(LMI)技术对一类随机Markov跳跃系统的鲁棒H∞控制进行了研究,设计出了状态反馈鲁棒H∞控制器. 针对一类具有Markov跳跃的中立型随机时滞系统,通过构造一个Lyapunov-Krasovskii泛函,首先建立了时滞依赖的随机Markov跳跃有界实引理,然后利用该引理讨论了在加性和乘性控制器不确定增益下,非脆弱鲁棒H∞控制器的设计.并在此基础上研究了随机闭环系统在无干扰输入下基于观测器的随机鲁棒镇定问题,以及在非零的外部干扰输入下,设计出了系统满足鲁棒H∞性能指标的基于观测器的非脆弱鲁棒H∞控制器.该类控制器和观测器对它的增益误差是不敏感或非脆弱的. 针对一类非线性中立型随机时滞系统,通过对时滞进行分割,构造相应的Lyapunov-Krasovskii泛函,结合随机积分不等式,非线性随机分析等数学工具,基于时滞反馈的思想,以线性矩阵不等式的形式,给出了使得随机闭环系统在无干扰输入下随机鲁棒镇定的时滞相关的充分条件,以及在非零的外部干扰输入下,系统满足鲁棒H∞性能指标的鲁棒H∞控制器的设计方法.在推导过程中,没有使用模型变换以及交叉项有界等可能产生保守性的方法.并引入了合适的自由权矩阵,减小了控制器的保守性和算法的复杂度. 最后对全文工作进行了总结,并指出了下一步的研究方向.总之,本文关于中立型随机时滞系统的鲁棒H∞和滤波器设计的研究,不仅丰富了随机系统鲁棒H∞控制理论,而且拓广了随机系统鲁棒H∞控制的研究方法,数值仿真例子也说明了文中结论的正确性和方法的有效性.


知网文化
【相似文献】
中国期刊全文数据库 前3条
1 孔德明;方华京;;一类基于观测器状态反馈镇定的网络化控制系统[J];信息与控制;2006年06期
2 王伟;张焕水;;网络控制系统估计与控制问题及其解决方法[J];山东大学学报(工学版);2007年03期
3 肖小庆;周磊;陆国平;;带有随机时滞的非线性网络控制系统的镇定[J];徐州师范大学学报(自然科学版);2007年04期
中国博士学位论文全文数据库 前2条
1 邓玮璍;受约束的网络控制系统分析与设计[D];上海大学;2012年
2 杨园华;随机时滞网络控制系统的测量建模与估计问题的研究[D];山东大学;2013年
中国硕士学位论文全文数据库 前4条
1 刘林;随机时滞系统的稳定性分析[D];鲁东大学;2014年
2 王銮;随机时滞系统的控制问题研究[D];鲁东大学;2014年
3 彭良红;随机时滞Hamilton系统的鲁棒控制及其在电力系统中的应用[D];曲阜师范大学;2014年
4 丁明智;非线性时滞细胞神经网络的稳定性研究[D];广西师范学院;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978