张量分解理论及其在机械故障诊断中的应用
【摘要】:在工程实际中采集的机械设备故障信号通常是不同激励源和多部件耦合振动的结果,具有典型的干扰大、非线性、非平稳等特征,且早期弱故障易被强背景噪声所淹没。此外,单一传感器获取的故障信息有限。因此,强噪声、多组分干扰下的弱故障特征提取以及多传感器联合诊断是当前故障诊断研究的热点问题。信号复杂的动力学特性在重构的高维相空间中可以有效展示,作为矩阵表示的高维扩展,张量是高维数据最自然的表现形式。基于张量分解的信号处理方法能挖掘数据中潜在的特征信息,近年来被广泛的应用于各类信号处理领域。论文以机械设备为研究对象,针对以上几个典型问题,深入研究并改进张量分解理论,为机械故障诊断提供一种新的理论体系。论文的主要工作包括以下几个方面:(1)针对强噪声干扰问题,提出基于张量核范数CP分解的信号降噪方法。将信号的降噪问题转化为信号特征子空间低秩近似求解问题,通过张量核范数最小化实现一维信号在高阶张量空间的低秩表达,并通过凸优化算法求取全局最优的收敛解以实现噪声的鲁棒消除。在此基础上,将提出的方法与多尺度排列熵相结合用于齿轮信号故障诊断中,并选择BP神经网络分类器实现了齿轮不同故障模式的智能识别。(2)针对多组分干扰下的故障特征提取问题,提出基于局部张量鲁棒主成分分析的信号子空间分离方法。在一维信号经重构形成的二阶轨迹张量即轨迹矩阵,在保持降噪性能的基础上,通过平滑核函数和距离函数建立信号的局部低秩模型。该模型认为信号吸引子相空间是代表信号中不同特征成分的多个子空间的线性混合,其对应的局部轨迹矩阵具有典型的低秩特征。并通过求解结合矩阵核范数和罚函数正则项的联合最小化的凸问题可以有效地分离这些低秩特征。然后,利用Teager能量算子计算信号的时频分布并通过故障特征的时频特征识别出故障相关的子空间分量,从而有效地从多组分信号中分离出故障特征。(3)针对多传感器联合分析和早期弱故障特征提取问题,提出基于广义非凸张量鲁棒主成分分析的弱故障特征信号能量保持方法。首先通过相空间重构技术将信号重构到三阶轨迹张量,获得多通道信号的高阶张量表征。然后应用经典的张量奇异值分解模型对其进行非线性滤波以挖掘多通道信号的联合故障特征。通过广义非凸约束对滤波采用的凸优化降噪框架中张量核范数的强凸约束进行非凸放松以避免有用的奇异值管幅值衰减,并利用峭度对于信号冲击特征的敏感的特性,定义一个新的张量奇异值峭度指标来自适应确定奇异值管的重构阶数,最终实现弱故障特征的有效提取和能量保持。(4)针对强噪声和多组分干扰下的弱故障诊断问题,将局部低秩模型扩展到三阶张量空间并对广义非凸张量鲁棒主成分分析进一步优化,提出基于局部广义非凸化张量鲁棒主成分分析的弱故障诊断方法。将实测的多通道信号重构的三阶轨迹张量建模为多个受噪声污染的局部低Tubal秩子空间的线性混合,并通过求解广义非凸优化框架有效分离这些特征子空间。同时定义一个新的多元峭度指标来识别其中与故障相关的子空间分量,从而有效地去除干扰成分并保持提取的故障特征的能量,实现多通道信号早期弱故障的特征提取和准确诊断。