溶液进样和激光剥蚀等离子体质谱在地球化学中的应用
【摘要】:本文对溶液雾化和激光剥蚀ICP-MS在地球科学中的应用进行探讨。主要开展了如下三方面研究:利用溶液雾化ICP-MS(SN-ICPMS)对实验室本底的定量监测、仪器参数的优化,利用自行研制的溶样弹,进行地质样品的分析测试;利用193nm准分子激光剥蚀ICP-MS(ELA-ICPMS)探索了进行岩石样品部分主、微量元素快速分析的仪器条件,并开展了长达19个月的USGS和NIST国际标准样品的测试工作;进行单颗粒锆石的微区定年研究等。
1.SN-ICPMS进行岩石样品的微量元素分析
利用ICP-MS检出限较低的功能对净化实验室的制水、制酸过程进行了监测。通过对自来水、蒸馏水、去离子水及超纯水的监测,发现Ag污染来自盛装超纯水(18MΩ)的塑料瓶;超纯HNO_3中的Sb(121和123amu两个相应的质量峰)和I(127amu)由于易挥发,故采用亚沸蒸馏并不能有效地除去;HF的高Sb信号并不是HF本身受Sb污染,而是其对雾室、雾化器、炬管等的侵蚀引起;HClO_4中高的85amu信号是由同量异位素或多原子离子的干扰而造成,而不是~(85)Rb受到污染。
对仪器的参数采用正交法(正交表是L_(64)(8~9×3~1×2~1))进行优化,发现离子透镜Lens 2和Lens3的电压水平(电压水平指正交表中的水平)应该相近;离子透镜Lens 4的电压水平应该比Lens2和Lens 3的都低一些;Collector的电压水平应该与Aperture的接近,并且都比Lens 4的电压水平要大;Pole Bias的电压水平应该比Aperture和Collector的电压水平都要小。Sampling Depth,即采样深度,应该在6mm左右;辅助气的流量应该接近于1.0L/min;RF的功率应该在1350w附近;Aperture的电压应该在-72v,即水平3左右;Collector的电压应该大于-9v,即水平3;Aperture、Pole Bias和Extractor的电压水平呈“∨”时,信号灵敏度增加,而当呈“∧”时信号灵敏度则下降。另外,影响峰中心曲线的主要因素是雾化气流量,Extractor、Pole Bias和Lens 4的电压。在离子通道的各个电压参数中Lens 3,Lens 4,Pole bias和Extractor的电压是主要控制峰中心曲线形状的参数。高的Lens 3电压和低的Lens 4电压会提高重质量数元素的灵敏度;低Pole bias电压和高的Extractor电压也有相同的效果。
自行设计并研制了适用于地质样品全岩分析的溶样弹,并实验出对普通地质样品溶解的酸组合,即1.5mL硝酸、1.5mL氢氟酸和0.02mL高氯酸,温度195℃,时间36小时。该溶样方法对部分不同岩类国际标样BHVO-1(玄武岩),AGV-1(安山岩),G-2(花岗岩)等进行了长期测定,结果较好。
2.ELA-ICPMS进行地质样品微区部分主、微量元素分析
实验研究结果表明,对于单矿物的微区微量元素分析,ELA-ICPMS的参数优化方案为:(1)载气流量选取0.55L/min;(2)激光频率增大时激光剥蚀出的样品量增多,信号比较平稳,但是剥深速率加快,元素间的分馏效应增大,综合考虑后一般选用10Hz;(3)激光能量的增大提高了剥蚀能力,即激光剥蚀出的样品量增多,信号灵敏度提高,一般选取ComPlex102激光器的最大高压30Kv对应的能量170~210mJ。若低于该能量,需要重新更换激光工作气体。对于易碎
|
|
|
|
1 |
包志安;贺国芬;陈开运;宋佳瑶;袁洪林;柳小明;;高温熔融研制岩石标准玻璃方法初步研究:以玄武岩为例[J];地球化学;2011年03期 |
2 |
王洪亮;徐学义;陈隽璐;闫臻;李婷;朱涛;;南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石U-Pb年代学约束[J];地质学报;2011年08期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|