收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

海洋天然气水合物地层钻井的钻井液研究

涂运中  
【摘要】: 天然气水合物是由水分子和天然气分子在一定温度和压力下形成的似冰雪状结晶化合物,又称笼形水合物或“可燃冰”。由于形成天然气水合物的气体主要为甲烷,因而也被称为甲烷水合物。自然界中的天然气水合物主要分布在大陆边缘的海洋深水区和陆上永冻地区,前者占了已发现数量的绝大多数。天然气水合物研究已成为当代地球科学研究和能源工业发展的一大热点,该研究涉及新能源的勘探开发、温室效应、全球碳循环和气候变化、古海洋、海洋地质灾害、天然气储运、油气管道流动安全等,并有可能对地质学、环境科学和能源工业的发展产生深刻的影响。因而世界上许多国家都从各自的关注点对天然气水合物展开了广泛的调查研究。特别是近年来能源短缺日益加剧,油气价格居高不下,使得各国更加关注具有能量密度高、储量大和分布广等特点的天然气水合物,纷纷加大对其勘探和开发研究的力度。对于我国来说,本身油气资源就不足,加之经济的快速发展,导致能源缺口越来越大。因此,从我国能源战略安全和经济可持续发展的角度来说,也应加大天然气水合物勘探开发的力度。 要对赋藏在地下一定深处的天然气水合物进行勘探和开发,钻井是必不可少的重要手段。天然气水合物的相平衡性质决定了此类地层钻井与一般油气地层钻井有很大不同,也导致这类地层钻井面临更加复杂的井内问题。首先在钻井时,储层井壁和井底附近地层应力会释放,地层压力会降低;同时,钻头切削岩石、井底钻具与井壁及岩心的摩擦都会产生大量的热能,此外循环泥浆温度控制不当,这些都可能使孔内温度升高。在钻井过程中井壁地层压力和温度的变化将不可避免地导致天然气水合物发生分解。当固态水合物起胶结或骨架支撑作用时,分解本身就会使井壁坍塌。而分解产生的水增加了井壁地层的含水量,使颗粒间的联系减弱,导致井壁不稳;逸出的气体又影响了钻井液的比重和流变性,对井壁稳定愈发不利,甚至还可能引发井涌和井喷等钻井事故。其次,钻井是一个非绝热过程,钻井液与地层间的热交换和水合物分解时吸热会导致循环钻井液和井内的温度发生变化,使钻井液的关键参数发生变化,如粘度、密度和化学稳定性等,井内的应力和孔隙水压力也会发生改变。最后,水合物分解释放的气体进入井内,与钻井液一起上返到地表。在此过程中,如果温度和压力条件适当,在钻杆或阀门,特别是防喷器等部位还会生成水合物栓塞。而且,含水合物地层一般为未固结或半固结砂岩或泥质砂岩,这使井内稳定的问题更加严峻。井壁的不稳定会导致井壁坍塌、卡钻、压裂、钻井液漏失或井控失败。在某些极端的情况下,还会造成钻井报废,甚至人员伤亡和钻井设备损坏。因此,保证井眼温度和流动安全是水合物地层钻井的关键。 本文的研究来自863计划专项课题——“海底天然气水合物地层钻井钻井液工艺技术研究”(课题编号:2006AA09Z316),属于探索性研究课题。针对海洋天然气水合物钻井方面所面临的难题,本文认为制定适合天然气水合物钻井的钻井工艺,设计满足要求的钻井液工艺方案是解决问题的关键。在海洋含天然气水合物地层中钻进时,一方面要考虑钻井液性能和温度,保证其能在抑制天然气水合物分解的前提下进行钻进,另一方面还必须考虑在井内地层环境温度较低情况下循环钻井液的选择,该类地层钻进方法主要为分解抑制法,即通过采用适当的钻井液密度,维持井内压力,冷却钻井液以及调整相关钻进参数,将天然气水合物维持在稳定状态的钻进方法。低温钻井液一是抑制井内出露天然气水合物的分解,二是抑制钻井液中天然气水合物的形成。 全文共分六章,主要内容如下: 第一章:介绍了天然气水合物的结构、性质和特点,对国内外天然气水合物研究的历程进行了回顾,对水合物勘探钻井情况进行了总结,然后分析了水合物钻井所面临的主要问题,据此提出了本论文的研究内容及技术路线; 第二章:首先对天然气水合物沉积地层的性质进行了总结,包括天然气水合物的分布形式、天然气水合物稳定区以及天然气水合物微观模型,然后对海洋水合物地层的特点进行了分析,包括地质特征、孔隙度和水合物饱和度、渗透性,有效导热系数、力学性质以及相平衡特征等。最后指出了天然气水合物藏的分类方法及开发利用水合物资源所应采取的战略。 第三章:对天然气水合物侵入地层的特征进行了分析,包括钻井液侵入水合物地层的过程及主要特性,水合物在多孔介质中的分解特性,并建立了钻井液侵入水合物地层的基本模型,进行了数值模拟研究,分析了模拟结果和保持井壁稳定对钻井液性能的要求。 第四章:研究了水合物地层钻井中使用的硅酸盐钻井液体系。首先分析了抑制水合物生成的钻井液应用现状、抑制水合物分解的钻井液工艺和水合物抑制剂的国内外研究现状;接着讨论了天然气水合物钻井对钻井液的性能要求;最后分别从海洋钻井液特点及性能要求、硅酸盐钻井液研究现状及其井壁稳定机理、硅酸盐钻井液体系主要处理剂的优选、不同处理剂对硅酸盐钻井液流变性的影响及钻井液处理剂对水合物的影响等方面详细研究了硅酸盐钻井液体系的性能。 第五章:对所得硅酸盐钻井液对水合物生成和分解抑制的影响进行了相关实验研究。首先分析了新型水合物动力学抑制剂的研究现状,然后分别进行了钻井液对水合物生成和分解的抑制实验,并对实验结果进行了分析和研究。 第六章:给出了论文研究的主要结论与认识,指出了论文存在的不足,提出了对今后研究的发展方向,并说明了论文的主要创新点。 通过上述的理论分析与实验研究,初步取得了一些有意义和具有实用价值的成果,得到了以下几点结论和认识: (1)在海洋天然气水合物地层中钻进时,由于储层井壁和井底附近地层应力会释放,地层压力降低。钻头切削岩石、井底钻具与井壁及岩心的摩擦都会产生大量的热能,使水合物稳定存在的温度压力条件被破坏,引发水合物的分解,造成井壁失稳,从而对钻井作业造成不利影响。要确保天然气水合物地层钻井安全顺利地进行,就必须采取措施对井内温度和压力进行严格控制,利用具有良好低温性能的钻井液尽可能控制并降低水合物的分解程度,以保持井壁稳定和井内安全; (2)钻井液侵入以及水合物的分解会不同程度地导致地层孔隙压力增大,进而对安全钻井产生不利影响。如果地层渗透性较差而水合物受热很快,分解产生的气体和水不能及时流走,会导致孔隙压力急剧增大,其增加程度取决于沉积层的渗透系数和增温速度。孔隙压力增加得越大,安全钻进的钻井液密度范围越小,越不利于正常钻进。此外,孔隙压力增加使得保持井壁稳定所需钻井液密度也要增大,这不仅严重影响钻速,而且增加井壁渗透,使井周的孔隙压力增大,从而进一步降低井壁的稳定性,形成恶性循环,大大增加井眼的复杂程度; (3)钻井液侵入以及水合物的分解引起的孔隙压力增大也会使骨架应力降低,地层抵抗破坏的能力下降。尤其是在近井壁区域,由于受井内温度扰动大,水合物分解比较剧烈,加之水力梯度大,导致此范围内的孔隙压力增加程度高,成为井壁最脆弱易失稳区域。其中,水合物分解对井壁应力场的影响是通过改变孔隙压力进而改变地层有效应力的方式来表现的; (4)钻井过程中地层含水量由于进入地层的钻井液滤液与地层中水合物分解产生的水而逐渐变大。当地层含水量过高时,会使水合物地层骨架水化加剧,导致井壁更加不稳。而且,水合物分解还会使地层的渗透性增大,钻井液向井壁渗透产生渗透压力,使地层的坍塌压力提高,破裂压力降低,使井壁更易坍塌与压裂,降低了井壁稳定性; (5)从钻井液的角度来看,通过降低自身的温度,使其接近原始地层的温度,就能减少对地层中水合物的热扰动,降低分解速度,从而降低地层中的孔隙压力和含水量升高的速度和幅度。同时,选择适当的钻井液密度,也有利于稳定地层中的水合物。此外,具有良好滤失护壁性能的钻井液能够在井壁上形成致密不渗透泥皮,控制地层的水化分散,也能促进井壁的稳定。因此,设计合适的钻井液体系是水合物地层钻井工作中的重要环节,其中具有协同防塌效果的钻井液处理剂和水合物分解抑制剂应是今后实验研究的重点; (6)钻井液温度的降低会对其性能(尤其是其流变性与滤失性)产生较大影响。其中,热力学抑制剂与动力学抑制剂的添加不仅对钻井液流变、滤失等常规性能产生影响,而且更为重要的是,其对水合物的生成与分解抑制也起到至关重要的作用。因此,水合物地层钻井液体系研究中需要考虑两者的配合使用,从而保证钻井液具有良好的低温性能与水合物抑制性能; (7)通过钻井液低温流变性测试,结合水合物的生成抑制与分解抑制实验,得到了含热力学与动力学抑制剂的硅酸盐钻井液推荐配方,①膨润土浆+0.3-0.5%HV-PAC+2%SMP-2+3%Na2SiO3+3%KCl+0.5-1%PVPK90+0.2-0.4%XC+10%NaCl,②膨润土浆+1-2%LV-CMC+2% SMP-2+3%Na2SiO3+3%KCl+0.5-1%PVPK90+0.2-0.4%XC+10%NaCl.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 陈建文,吴志强,龚建明;天然气水合物的地球物理识别技术[J];海洋地质动态;2004年06期
2 陈建阳,张志杰,于兴河;AVO技术在水合物研究中的应用及应注意的问题[J];天然气地球科学;2005年01期
3 刘怀山,周正云;用于研究东海天然气水合物的地震资料处理方法[J];青岛海洋大学学报(自然科学版);2002年03期
4 ;专家专论——新能源[J];油气地球物理;2003年03期
5 王淑红,宋海斌,颜文;天然气水合物稳定带的计算方法与参数选择探讨[J];现代地质;2005年01期
6 Dong-Hyo Kang;杨传胜;;韩国东海Ulleung盆地天然气水合物地震识别标志[J];海洋地质动态;2009年02期
7 雷怀彦,王先彬,房玄,郑艳红;天然气水合物研究现状与未来挑战[J];沉积学报;1999年03期
8 张剑,业渝光;天然气水合物探测技术的模拟实验研究[J];海洋地质动态;2003年06期
9 王淑红,宋海斌,颜文;天然气水合物的环境效应[J];矿物岩石地球化学通报;2004年02期
10 戚学贵,陈则韶;天然气水合物研究进展[J];自然杂志;2001年02期
11 王祝文,李舟波,刘菁华;天然气水合物的测井识别和评价[J];海洋地质与第四纪地质;2003年02期
12 刘怀山,赵月霞;管道中天然气水合物的形成对“西气东输”的影响[J];青岛海洋大学学报(自然科学版);2003年02期
13 高兴军,于兴河,李胜利,段鸿彦;地球物理测井在天然气水合物勘探中的应用[J];地球科学进展;2003年02期
14 卢林松;天然气水合物国际研讨会在青岛召开[J];海洋石油;2003年04期
15 李淑霞,陈月明,杜庆军;天然气水合物开采数值模拟的参数敏感性分析[J];现代地质;2005年01期
16 ;“可燃冰”开采要以环境保护为前提[J];探矿工程(岩土钻掘工程);2009年12期
17 许红,刘守全,王建桥,蔡乾忠;国际天然气水合物调查研究现状及其主要技术构成[J];海洋地质动态;2000年11期
18 业渝光;实验室人工合成天然气水合物在青岛海洋地质研究所获得成功[J];海洋地质动态;2002年01期
19 甘华阳,王家生,胡高韦;海洋沉积物中的天然气水合物与海底滑坡[J];防灾减灾工程学报;2004年02期
20 姚伯初;南海天然气水合物的形成和分布[J];海洋地质与第四纪地质;2005年02期
中国重要会议论文全文数据库 前10条
1 吴应湘;;天然气水合物的性质、勘探及开采[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
2 郑军卫;;加快我国天然气水合物研究工作步伐[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
3 杨木壮;黄永样;姚伯初;金庆焕;;南海天然气水合物资源潜力及其能源战略意义[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
4 雷兴林;何丽娟;;海洋沉积与天然气水合物形成过程的数值模拟研究[A];中国地球物理·2009[C];2009年
5 吴志强;;地震岩性处理技术在天然气水合物识别中的应用研究[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
6 王淑红;颜文;宋海斌;;南海南部天然气水合物稳定带厚度及资源量估算[A];中国地球物理学会第二十届年会论文集[C];2004年
7 栾锡武;;天然气水合物的上界面[A];中国地球物理·2009[C];2009年
8 耿建华;邵磊;吴松;吴能友;张光学;;关于南海ODP1144站位天然气水合物进一步探讨[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
9 王彦瑞;曾树兵;严雪莲;高秀敏;;水合物在海洋天然气运输中应用探讨[A];2009年度海洋工程学术会议论文集(上册)[C];2009年
10 赵群;郝守玲;;天然气水合物的岩石物理:物理模拟研究[A];中国地球物理学会第二十届年会论文集[C];2004年
中国博士学位论文全文数据库 前10条
1 涂运中;海洋天然气水合物地层钻井的钻井液研究[D];中国地质大学;2010年
2 孙建业;海洋沉积物中天然气水合物开采实验研究[D];中国海洋大学;2011年
3 胡高伟;南海沉积物的水合物声学特性模拟实验研究[D];中国地质大学;2010年
4 吕琳;天然气水合物(地球物理属性)的神经网络识别方法及软件开发[D];吉林大学;2011年
5 刘锋;南海北部陆坡天然气水合物分解引起的海底滑坡与环境风险评价[D];中国科学院研究生院(海洋研究所);2010年
6 赵江鹏;天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟[D];吉林大学;2011年
7 庞守吉;祁连山木里天然气水合物钻孔沉积构造特征及与水合物分布关系研究[D];中国地质大学(北京);2012年
8 刘瑜;二氧化碳地下封存与强化采油利用基础研究[D];大连理工大学;2011年
9 杨明军;原位条件下水合物形成与分解研究[D];大连理工大学;2010年
10 于锋;甲烷水合物及其沉积物的力学特性研究[D];大连理工大学;2011年
中国硕士学位论文全文数据库 前10条
1 刘天乐;海底天然气水合物地层钻井用聚合醇钻井液体系研究[D];中国地质大学;2010年
2 马庆涛;天然气水合物储层剪切强度及井壁稳定性研究[D];中国石油大学;2011年
3 周丹;天然气水合物分解对海底结构物稳定性影响的研究[D];大连理工大学;2012年
4 杨晓云;天然气水合物与海底滑坡研究[D];中国石油大学;2010年
5 宋琦;多元复杂体系水合物生成的实验及热动力学模型研究[D];常州大学;2010年
6 张大平;加速合成四氢呋喃水合物实验研究及水合物地层钻探扰动有限元分析[D];吉林大学;2011年
7 孙晓杰;天然气水合物地层物理力学性质实验研究[D];中国石油大学;2011年
8 周越;天然气水合物测井解释方法初步研究[D];吉林大学;2010年
9 毕海波;台西南海域天然气水合物含量估算及地球化学特征分析[D];中国科学院研究生院(海洋研究所);2010年
10 姚蕾;多孔介质中水合物的核磁共振成像实验研究[D];大连理工大学;2010年
中国重要报纸全文数据库 前10条
1 记者 滕艳 特约记者 曹雪晴;模拟实验研究推进天然气水合物探测[N];中国国土资源报;2011年
2 王宪忠;天然气水合物[N];大众科技报;2000年
3 ;与国家需求共呼吸 立科学前沿同攀登[N];中国国土资源报;2010年
4 本报记者 窦克林 通讯员 陈惠玲;科技进步:我国海洋勘查的支撑[N];中国矿业报;2011年
5 樊栓狮;天然气水合物如何成为后续能源[N];中国化工报;2005年
6 本报通讯员 肖宝巨;点燃“冰”火[N];工人日报;2009年
7 李明明;青藏高原冻土区天然气水合物钻探计划通过论证[N];中国矿业报;2010年
8 毛彬;天然气水合物开发的利与弊[N];中国海洋报;2004年
9 肖宝巨;点燃“冰”火[N];中国煤炭报;2009年
10 本报记者 肖宝巨;点燃“冰”火[N];中煤地质报;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978