收藏本站
收藏 | 论文排版

类骨羟基磷灰石与肝癌细胞相互作用研究

Ingo W.Bauer  
【摘要】: In the human body, Hydroxyapatite (Ca_(10)(PO_4)6(OH)_2, HAP) is present in form of biological apatite in 60-70 % of the bone and dental tissue with the characteristics of low crystallinity, calcium deficient, and carbonate impurities. In many living organisms, amorphous calcium phosphates (ACP) were observed to work as a precursor for the formation of biological apatite. Recent studies showed that HAP nanoparticles in form of aqueous sol have a selective inhibition effect on the proliferation of liver cancer cells. However, the exact mechanism for the found anti-cancer effect could not be clearly identified. In this work, the interactions of biomimetic HAP nanoparticles with liver cancer cells were investigated. The correlations between the synthesis process on the one hand and nanoparticle characterstics and cellular effects on the other hand were described. Along with the optimization of the HAP nanoparticle sol concentration and the experimental use in vitro, the pathway of internalization as well as the functional mechanism for the effects of nano HAP sol on the proliferation of liver cancer cells were analysed and determined. The commonly used method to prepare HAP nanoparticles in our institute was based on monocalcium phosphate and calcium hydroxide and extensive ultrasound treatment. In this work, only one minute of ultrasound was applied to obtain nano dispersed ACP sol as biocompatible precursor with about 1 wg% carbonate impurities to imitate the natural formation of biological apatite in form of aqueous nanoparticle sol. The correlations of the parameters of time and temperature with the HAP nanoparticle characteristics were investigated by laser scattering, pH value measurement, XRD, FTIR, and TEM. Until peak temperatures of 50篊, the nano ACP with particle sizes above 130 nm remained stable and no phase transformation or change of the particle shape was observed. When kept for several weeks at room temperature, the carbonated amorphous calcium phosphate precursor transformed into HAP as well as some traces of calcite via slow diffusion controlled crystallization. The storage of ACP sol in the refrigerator at 4篊 dramatically reduced the stability of the sol and leaded to particle agglomerations. When the nano ACP sol was heated to peak temperatures between 50-75篊, the induced heat enabled the dissolution and re-precipitation of the Precursor and the formation of needle shaped HAP nanoparticles with sizes below 90 nm driven by chemical controlled surface reactions. The obtained HAP nanoparticles were low crystalline, calcium deficient (Ca/P<1.65) with about 1 wg% carbonate impurity mainly of type B where CO_3~(2-) replaced PO_4~(3-). Longer heating or sterilization had the effect of ripening which slowly increases the crystallinity and reduces the calcium deficiency. The heat-induction method was proposed to increase the HAP sol concentration through water evaporation. When heated for 25 minutes at 100篊, stable HAP sol with concentrations of up to 16.8 mg/ml was obtained. Longer heat-induced as well as steam sterilized HAP sols revealed very low calcium deficiency and slightly higher crystallinity. According to the standard procedure, more calcium hydroxide was added compared to stoichiometric HAP composition at Ca/P = 1.67 in order to achieve higher pH values to support the formation of HAP. This leaded to probably about 12% excessive Ca~(2+) ions. Furthermore, by-products such as amorphous and crystalline calcium carbonate were suggested. The experimental study of the interactions between HAP nanoparticle sol and the cell culture suspension revealed that HAP sol immediately became instable in cell culture medium and formed agglomerates of above 500 nm in size. When more than 20 vol% HAP sol with above pH 9 was added to the cell culture medium, the pH value of the cell suspension exceed the upper pH value tolerance of 7.45. The refreshing of medium after 12 hours and 2 days resulted in 17% higher proliferation activity after 5 days. Hence, with longer durations of incubations without refreshing the medium, the in vitro conditions worsened and thereby reduced the reliability of the calculated inhibition rates. The in vitro studies showed that the substitution of 40 vol% cell culture medium by aqueous HAP sol or distilled water both leaded to higher osmotic pressure inside of the cells that typically caused oncrosis. In contrast, the cell proliferation was only sighly affected'by the addition of 20 vol% water. At optimized in vitro conditions with identical nanoparticles and final HAP concentration of 0.56 mg/ml in the cell suspension, 33% stimulation after 2 and 5 days were determined. Alamar Blue confirmed the curve developing of the inhibition rate of HAP nanoparticles but was shifted to lower inhibition rates into the range of stimuation and measured 11% stimulation after 5 days. Increasing final HAP concentrations under optimized conditions from 0.56-1.12 mg/ml slightly stimulated cancer cell growth after 2 days and decreased the cell proliferation after 5 days. Furthermore, increasing crystallinity of the HAP nanoparticles leaded to higher proliferation activity after 2 days of incubation and multible steam sterilization leaded to highly toxic effects. The investigation of the internalization mechanism of HAP nanoparticles in hepatoma cells clearly verified clathrin mediated endocytosis as main entrance pathway of HAP nanoparticles in the liver cancer cells. The TEM analysis of the HAP nanoparticle treated cancer cells under optimized conditions clearly revealed the characteristics of paraptosis as dominant cell death type. The cell size and organells did not show visible changes in response to the HAP treatment. The only effect was found in the high density of vacuoles with various sizes. Not all of these vacuoles contained HAP nanoparticles and the enclosed nano HAP content was very low. Propoably due the similarity and relationship of apoptosis and paraptosis, apoptosic patterns were indicated by the flow cytometry of the HAP treated cancer cells. The cell cycle analysis revealed higher amounts of cells in the G1 and S phase. The short-term stimulation of cell growth was probably caused by ionic HAP sol by-products and early HAP solutes that functioned as additional nutritions. The long-term inhibition effect resulted from risen ion contents in the cytoplasma close or above toxic concentrations and accumulating vacuoles began to destroy the cytoskeleton. These changes induced by the internalized HAP nanoparticle sol induced paraptosis which leaded to further vacuolization within the process of programmed cell death. This work provided the foundation for the optimization of the interactions and effects between biomimetic HAP nanoparticles and liver cancer cells for biomedical applications. The usage of nano HAP as carrier for drug or gene delivery was proposed as very promising application for the treatment of cancer and other deaseases.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 钱仁怡;魏国清;孟照辉;;血小板-白细胞相互作用在心血管疾病中的研究进展[J];临床医学;2015年06期
2 彭松;胡厚源;;血小板-淋巴细胞相互作用与动脉粥样硬化[J];中国动脉硬化杂志;2014年08期
3 胡为民,程惊秋,李胜富,卢晓风,万琳,李幼平;人外周血单个核细胞与猪内皮细胞相互作用表达上调基因的鉴定[J];四川大学学报(医学版);2003年02期
4 贾卫;T、B细胞相互作用分子基础的研究进展[J];细胞与分子免疫学杂志;1995年Z1期
5 葛泉波,何淑兰,毛津淑,姚康德;生物材料与细胞相互作用及表面修饰[J];化学通报;2005年01期
6 袁正宏;周晓辉;闻玉梅;;病原微生物与宿主细胞相互作用的研究进展[J];国外医学(微生物学分册);2001年02期
7 周立;庄柯;高建峰;刘金彪;桑明;郭铭;霍文哲;;HIV-1与γδT细胞相互作用机制的研究进展[J];武汉大学学报(医学版);2015年03期
8 范金茹;刘凤英;黄佳;汪曼;;疏肝化瘀豁痰法治疗不稳定型心绞痛疗效及对血小板-白细胞相互作用的干预观察[J];中国中医急症;2008年12期
9 ;CD28/CTLA4在T-B细胞相互作用中的活化和调控作用[J];国外医学(免疫学分册);1996年06期
10 李燕;耿雪;阎雪莹;;介孔二氧化硅纳米粒的形貌对其与细胞相互作用及在生物体内行为的影响[J];中国药房;2016年25期
11 肖子辉;冯宇鹏;肖献忠;;HSF1对内毒素血症小鼠血小板与白细胞相互作用和组织因子表达的影响[J];中国病理生理杂志;2015年10期
12 张春兵;邱媛媛;郗晓宇;章东;;超声增强脂质体与细胞相互作用的研究[J];物理学报;2009年06期
13 李绍康;T-B、T-T淋巴细胞相互作用表现及其在临床上的应用[J];上海免疫学杂志;1984年03期
14 姬晓云;张建中;;CagA对幽门螺杆菌与宿主细胞相互作用影响的研究进展[J];中国全科医学;2007年12期
15 李娟;孟冬梅;赵春亭;;自然杀伤细胞与树突细胞相互作用及其在白血病治疗中的意义[J];国际输血及血液学杂志;2006年04期
16 黄显凯;选择素及其对中性粒细胞与内皮细胞相互作用的影响[J];国外医学.外科学分册;1998年06期
17 宋翠;张潇;魏炜;马光辉;;原子力显微镜在测定颗粒与细胞相互作用中的应用[J];生物加工过程;2019年01期
18 王振光,孙善珍,施琳,王东关;口腔黏膜成纤维细胞与癌细胞相互作用的基因表达特性研究[J];山东大学学报(医学版);2005年07期
19 董薇,蔡美英;树突状细胞和T细胞相互作用过程中的免疫突触[J];细胞与分子免疫学杂志;2005年S1期
20 徐姗;姚咏明;盛志勇;;树突细胞与T淋巴细胞相互作用及其免疫调节效应[J];解放军医学杂志;2006年09期
中国重要会议论文全文数据库 前10条
1 田瑞军;;研究细胞-细胞相互作用的蛋白质组学分析新方法[A];中国化学会第十一届全国生物医药色谱及相关技术学术交流会(材料分析与其它分会)论文摘要集[C];2016年
2 蔡绍皙;王远亮;王红兵;黄岂平;吴泽志;张惠静;;应力—基底—细胞相互作用实验研究[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年
3 吕晓迎;黄炎;瞿颖华;杨雅敏;马靖武;王健丹;陆慧琴;包翔;;生物组学技术在口腔生物材料与细胞相互作用分子机理研究中的应用[A];第八届全国口腔材料学术交流会暨中华口腔医学会口腔材料专业委员会2013年会论文集[C];2013年
4 潘燕;李学军;;低分子量肝素对肿瘤细胞与内皮细胞相互作用的影响及其机制研究[A];中国病理生理学会微循环专业委员会第十二届学术大会会议指南及论文摘要集[C];2007年
5 易长青;戚穗坚;杨梦甦;;硅纳米线与细胞相互作用的研究[A];中国化学会第27届学术年会第03分会场摘要集[C];2010年
6 吕晓迎;黄炎;瞿颖华;杨雅敏;马靖武;王健丹;陆慧琴;包翔;;基于生物组学技术的几种口腔材料与细胞相互作用的分子机理研究[A];中华口腔医学会口腔材料专业委员会第九次全国口腔材料学术交流会论文集[C];2014年
7 孔杰;刘原君;刘全忠;;衣原体噬菌体与宿主细胞相互作用的相关研究进展[A];中华医学会第十八次全国皮肤性病学术年会论文汇编[C];2012年
8 张付生;杜怡峰;;神经胶质细胞与T细胞相互作用:中枢神经系统感染的重要机制[A];中华医学会第十七次全国神经病学学术会议论文汇编(下)[C];2014年
9 刘世宇;;基于供体和宿主细胞相互作用的MSCs移植治疗[A];中华口腔医学会口腔医学科研管理分会第二次学术年会论文集[C];2017年
10 卫红艳;任留梅;翟琼莉;邱明才;;人成骨样细胞MG-63与乳腺癌细胞相互作用的体外研究[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
中国博士学位论文全文数据库 前10条
1 Ingo W.Bauer;类骨羟基磷灰石与肝癌细胞相互作用研究[D];武汉理工大学;2006年
2 宋洐燕;幽门螺杆菌与胃上皮粘膜细胞相互作用不同时间点表达谱以及蛋白质图谱分析[D];中国疾病预防控制中心;2008年
3 朱莉思;蛋白质—配体及蛋白质—细胞相互作用的研究策略[D];北京协和医学院;2014年
4 朱可可;Ly108-SAP调节T细胞与抗原呈递细胞相互作用的机制[D];清华大学;2015年
5 刘蒙蒙;金纳米颗粒与细胞相互作用的暗场显微研究[D];中国科学院研究生院(上海应用物理研究所);2015年
6 吴长宇;生物分子探针与肿瘤细胞相互作用机制的光谱—电化学研究[D];东南大学;2016年
7 马勇杰;磁性纳米粒子的细胞内吞及基因转染研究[D];上海交通大学;2012年
8 何海洋;轮状病毒与宿主细胞相互作用的研究[D];第三军医大学;2012年
9 牟晓洲;基于微电子阻抗技术实时监测细菌与细胞相互作用方法的建立和应用[D];浙江大学;2011年
10 任艳;牛病毒性腹泻病毒囊膜蛋白E2与牛胚胎滋养层细胞相互作用的分子机制研究[D];石河子大学;2010年
中国硕士学位论文全文数据库 前10条
1 黄真蓉;基于暗场成像技术研究金纳米棒作为方向探针在内吞过程中与细胞的相互作用[D];湖南大学;2017年
2 吴东;氯吡格雷减轻小鼠急性肺缺血再灌注损伤[D];华中科技大学;2016年
3 何斌;双荧光载药脂质体与细胞相互作用的研究[D];湖南大学;2009年
4 刘妍;丙型肝炎病毒非结构蛋白4A、4B与肝细胞相互作用的机制研究[D];中国人民解放军军事医学科学院;2005年
5 史坚;冠心病患者血小板GPⅥ的表达及其与内皮细胞相互作用的研究[D];大连医科大学;2012年
6 刘建军;聚电解质微囊的制备及与细胞相互作用的研究[D];浙江理工大学;2017年
7 张军;使用荧光纳米材料实时跟踪技术可视化研究病毒与细胞相互作用[D];华中师范大学;2010年
8 何逸鹏;纳米金与不同亚型乳腺癌细胞相互作用的初步研究[D];福建师范大学;2015年
9 张鹏飞;磷脂修饰量子点与细胞相互作用的研究[D];湖南大学;2009年
10 闫江涛;成纤维细胞与肺癌GLC-82细胞相互作用对MMP-1,2,9的影响[D];兰州大学;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978