收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Research on Facial Micro-expression Recognition for Online Learning

王浩宇  
【摘要】:With the continuous empowerment of Internet technology,the education industry is deeply integrated with the Internet.Online learning is an open learning environment based on Internet technology and education platforms.Unlike traditional classrooms,online learning provides learners with a more convenient way to learn,in contras,there is a serious problem in online learning:teachers can't sense students'learning emotions in real time.In order to improve the learning efficiency of the learner,the educator must grasp the current learning state and learning mood ofthe learner as soon as possible to adjust in time.However,learners may try to hide emotions during the learning process and subtle expression changes are instantaneous,which traditional fecial recognition techniques are difficult to capture.Therefore,it is especially important to apply facial micro-expression recognition technology to online learning.In the micro-expression recognition process,the extracted feature quality plays a decisive role in the accuracy of recognition.Among the commonly used feature extraction methods are optical flow method,3D histogram,LBP_TOP,etc.,among them,LBP-TOP algorithm is a better algorithm based on video micro-expression recognition.However,the LBP algorithm which compares the size of the central pixel and the neighboring pixel is not sensitive to illumination as well as is greatly affected by noise.Therefore,this paper improves a micro-expression recognition method based on optical flow method and LBP-TOP feature fusion.The specific work of this paper is as follows:(1)Improve and compare micro-expression recognition algorithm:two classical microfacial feature extraction algorithms and microfacial classification technology are introduced.Because of the limitation of single feature extraction algorithm,this paper proposes a method of micro-expression recognition based on optical flow method and LBP-TOP feature fusion,then compares the two algorithms based on the same reference database and the same expression classification technology;(2)Creation of micro-expression database:based on the online learning mode,the advantages and disadvantages ofthe existing database are analyzed and summarized.The micro-expression video of the tester is obtained based on the creation principle of the CASMEII database and the obtained video is processed by image processing including video frame extraction,image preprocessing,face detection and face segmentation;Finally,micro-expressions are applied to the processed images to complete an application scenario database suitable for online learning;(3)Application of online learning field:introduce the definition and structure of the online learning system and analyze the shortcomings of the existing online learning system structure.Based on the online learning platform,the emotional state recognition module is designed and implemented.The micro-expression recognition technology and micro-feature feature matching are used to feedback the learner's emotional state in real time during the teaching process.According to the feedback result,the teaching process is dynamically adjusted and improved.The phenomenon of "lack of emotion" in online learning helps to improve the learning efficiency of learners.


知网文化
【相似文献】
中国期刊全文数据库 前19条
1 孟庆梅;吴伟国;;Artificial emotional model based on finite state machine[J];Journal of Central South University of Technology;2008年05期
2 彭晓兰;解仑;刘欣;王志良;;基于外界刺激与个性特征的情绪状态转移模型(英文)[J];中国通信;2013年06期
3 Kiichi Tago;Qun Jin;;Influence Analysis of Emotional Behaviors and User Relationships Based on Twitter Data[J];Tsinghua Science and Technology;2018年01期
4 Bo Yuan;Tian-lin Cheng;Kan Yang;Xu Zhang;Zilong Qiu;;Autism-related protein MeCP2 regulates FGF13 expression and emotional behaviors[J];Journal of Genetics and Genomics;2017年01期
5 HAN Jing;XIE Lun;LI Dan;HE Zhijie;WANG Zhiliang;;Cognitive Emotion Model for Eldercare Robot in Smart Home[J];中国通信;2015年04期
6 ;The Motor Tycoon of The world[J];技术经济与管理研究;1998年04期
7 Sabine Aust;Karin Filip;Stefan Koelsch;Simone Grimm;Malek Bajbouj;;Music in depression: Neural correlates of emotional experience in remitted depression[J];World Journal of Psychiatry;2013年02期
8 ;SPEECH EMOTION RECOGNITION USING MODIFIED QUADRATIC DISCRIMINATION FUNCTION[J];Journal of Electronics(China);2008年06期
9 J.A.RINCON;J.BAJO;A.FERNANDEZ;V.JULIAN;C.CARRASCOSA;;Using emotions for the development of human-agent societies[J];Frontiers of Information Technology & Electronic Engineering;2016年04期
10 魏景汉,潘垚天,靳海燕;Relativity Between Extrication Wave of Mental Load (EML) and Emot'on[J];Science in China,Ser.B;1993年10期
11 ;Chinese emotional words in patients with major depressive disorder during a subliminal Stroop task An event-related potential study[J];Neural Regeneration Research;2010年16期
12 Qing Liu;Ren-Lai Zhou;Xin Zhao;Xiao-Ping Chen;Shan-Guang Chen;;Acclimation during spaceflight:effects on human emotion[J];Military Medical Research;2016年03期
13 ;The interaction between cognition and emotion[J];Chinese Science Bulletin;2009年22期
14 唐向阳;;Emotional memory in patients with earlystage Parkinson's disease[J];China Medical Abstracts(Internal Medicine);2019年02期
15 WU HaiYan;TANG Ping;HUANG XuShu;HU XiaoQing;LUO YueJia;;Differentiating electrophysiological response to decrease and increase negative emotion regulation[J];Chinese Science Bulletin;2013年13期
16 LIU Shuang;MENG Jiayuan;ZHAO Xin;YANG Jiajia;HE Feng;QI Hongzhi;ZHOU Peng;HU Yong;MING Dong;;Cross-task emotion recognition using EEG measures:first step towards practical application[J];Instrumentation;2014年03期
17 ;The Effects of Positive Emotion on Global-Local Processing:An ERP study[J];生物物理学报;2009年S1期
18 石少虎;王冕;李莹;张振军;;关于EMOTION项目增进亲子沟通的研究[J];才智;2016年23期
19 ROH Yong-Wan;KIM Dong-Ju;LEE Woo-Seok;HONG Kwang-Seok;;Novel acoustic features for speech emotion recognition[J];Science in China(Series E:Technological Sciences);2009年07期
中国重要会议论文全文数据库 前10条
1 ;New Developments in ERP Studies of Emotion and Cognition[A];第一届中国情感计算及智能交互学术会议论文集[C];2003年
2 Zhang De-yang;Han Yi-liang;Li Xiao-long;;Research on micro-blog emotional tendency based on keyword extraction and dependency syntax[A];第37届中国控制会议论文集(F)[C];2018年
3 ;The Role of Emotion Experiences,Emotional Intelligence,Emotional Attitude:A Longitudinal Design about Emotion Regulation[A];第十二届全国心理学学术大会论文摘要集[C];2009年
4 ;Research on E-learning System Model based on Affective Computing[A];第二届和谐人机环境联合学术会议(HHME2006)——第2届中国人机交互学术会议(CHCI'06)论文集[C];2006年
5 Jian Huang;Hejiang Li;Jue Wang;Hongjing Mao;Wenying Jiang;Hong Zhou;Shulin Chen;;Effect of prenatal emotional management on maternal emotion and delivery outcomes[A];中华医学会第十次全国妇产科学术会议产科会场(产科学组、妊高症学组)论文汇编[C];2012年
6 Raymond C.K.Chan;;An exploration of emotional face perception in individuals with schizotypal personality features:An ERP study[A];中国神经科学学会第九届全国学术会议暨第五次会员代表大会论文摘要集[C];2011年
7 Gal Richter-Levin;;On the dynamic nature of the amygdala role in "emotional tagging"[A];中国神经科学学会第十二届全国学术会议论文集[C];2017年
8 ;Adolescent violence-related behavior:associations with cognitive emotion regulation[A];中华预防医学会儿少卫生分会第九届学术交流会、中国教育学会体育与卫生分会第一届学校卫生学术交流会、中国健康促进与教育协会学校分会第三届学术交流会论文集[C];2011年
9 Andrew C.N.Chen;;The effect of valence and arousal of emotional pictures on EEG activity[A];Proceedings of the 8th Biennial Conference of the Chinese Society for Neuroscience[C];2009年
10 Jing Liu;Jun Tong;Jun Han;Fan Yang;Shuo Chen;;Affective Computing Applications in Distance Education[A];2013教育技术与信息系统国际会议论文集[C];2013年
中国博士学位论文全文数据库 前1条
1 鲍志坤;情感的英汉语言表达对比研究[D];复旦大学;2003年
中国硕士学位论文全文数据库 前7条
1 王浩宇;[D];华中师范大学;2019年
2 吕顺雨;知情交融策略在初中英语口语教学中的应用研究[D];信阳师范学院;2017年
3 梁晨;[D];苏州大学;2012年
4 廖世军;基于认知互动观的情感隐喻研究[D];湖南农业大学;2010年
5 HAROYAN NARE(娜拉);[D];上海师范大学;2014年
6 李培;文感的认知文体学研究[D];苏州大学;2012年
7 陈雯雯;高中英语教师情绪劳动能力研究[D];广西师范大学;2016年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978