基于改进位移模式的有限元超收敛算法研究
【摘要】:超收敛计算的研究是近年来有限元领域研究中的热点与难点之一。通过对基于改进位移模式的积分形式与基于常规位移模式伽辽金方程的比较,导出了伽辽金方程精确成立的条件。在以此条件作为位移模式分析的理论依据前提下,本文提出了改进位移模式,即将高阶有限元解的位移模式用常规有限元解的位移模式表示,用两种位移模式之和构造新的位移模式,结合多尺度方法的思想和超收敛计算的解析公式,提出了一种全新的前处理超收敛的计算方法。该方法无需任何人为的磨光,对一维有限元法的线性单元,本文结点和单元的位移、导数都达到了h4阶的超收敛精度。应力跨单元自动平衡,可精确满足自然边界条件,且实施简便,计算量增加很小。
有限元线法是一个不断发展的课题,国内外对有限元线法超收敛的计算研究得较少。本文利用有限元线法的半解析性,将一维有限元中获得全面成功的改进位移模式的超收敛算法推广至二维有限元线法,取得了良好的效果。
全文主要工作如下:
1、通过基于改进位移模式与基于常规位移模式伽辽金方程的比较,导出了伽辽金方程精确成立的条件。论证了位移模式与泡函数的相关性。提出了一次元与泡函数结合的单元方案。利用精确成立的条件,通过量级分析,保留泡函数主要的影响项,避免了求解泡函数的解析表达式。为位移模式的分析提供了理论依据。
2、以一维C0问题为模型问题,提出有限元法的基于改进位移模式的前处理超收敛算法。在原有试函数的基础上,增加了高阶试函数,使得单元内平衡方程的残差减少,从而达到提高精度的目标。对于近似单元,根据单元内部平衡条件,导出单元上任一点的位移和导数的超收敛解的计算公式。基于伽辽金方法,采用积分形式推导了单元刚度矩阵。
3、将基于改进位移模式的前处理超收敛算法成功推广到一维有限元法其它问题,包括(1)一维C1问题;(2)二阶非自伴两点边值问题Galerkin有限元问题,亦即将基于改进位移模式的前处理超收敛算法推广到了非自伴算子问题而不仅仅是自伴算子的问题。(3)一维n阶问题的超收敛算法,本部分工作为该法广泛应用于一般一维问题的有限元法的超收敛计算打下了良好的基础。
4、将基于改进位移模式的前处理超收敛算法成功推广应用到二维有限元线法的Poisson方程问题,基于线性形函数,采用变分形式推导了有限元线法求解的修正的常微分方程组。算例结果表明:结点和单元内的位移、导数的收敛精度得到了极大的提高。
由于本文得出的应力和位移是逐点超收敛的,因而有望在此基础上发展出不同于目前常规的误差估计和自适应求解方法。
|
|
|
|
1 |
陈志高,杨亚天;量子力学中的微扰论[J];大学物理;2000年04期 |
2 |
陈焕贞,李潜;一类耦合方程有限元解及其高阶时间导数的超收敛性[J];济南大学学报(社会科学版);1995年04期 |
3 |
潘青,陈传淼;常微分方程初值问题的连续有限元法[J];湖南师范大学自然科学学报;2001年02期 |
4 |
张满平,陈艳萍;基于四边形剖分的最小二乘混合有限元解的超收敛[J];湘潭大学自然科学学报;2002年01期 |
5 |
林群,严宁宁;关于Maxwell方程混合元方法的超收敛[J];工程数学学报;1996年S1期 |
6 |
喻海元;三次样条有限元解的超收敛及渐近展式[J];中山大学学报论丛;1996年05期 |
7 |
张铁;导数小片插值恢复技术与超收敛性[J];计算数学;2001年01期 |
8 |
肖春霞,陈传淼;二阶常微分方程初值问题C~0有限元的超收敛[J];数学理论与应用;2002年01期 |
9 |
林群,杨一都;有限元方法的插值和校正[J];数学的实践与认识;1991年03期 |
10 |
张林;一类非协调膜元的超收敛估计[J];山东矿业学院学报;1996年03期 |
11 |
周俊明,林群;高阶有限元的超逼近[J];天津工业大学学报;2001年04期 |
12 |
陈传淼;矩形奇妙族有限元的超收敛性[J];中国科学A辑;2002年07期 |
13 |
袁驷,和雪峰;一个高效的一维有限元自适应求解的新方案 第十三届全国结构工程学术大会特邀报告[J];工程力学;2004年S1期 |
14 |
明平兵,熊华鑫;对拱梁的同伦有限元方法和超收敛[J];四川大学学报(自然科学版);1996年05期 |
15 |
陈传淼;有限元L~2投影的两类超收敛[J];科学通报;1997年16期 |
16 |
贾祖朋;Hammerstein型非线性积分方程的线性有限元逼近[J];湘潭师范学院学报(社会科学版);1998年03期 |
17 |
公敬,杨晓忠,李潜;一类双曲型积分微分问题有限元逼近的超收敛估计(英文)[J];工程数学学报;2005年03期 |
18 |
许艳;王仁宏;许志强;;一类超收敛数值差商公式研究[J];计算数学;2007年01期 |
19 |
杨一都;特征值问题有限元逼近位移超收敛的一个定理[J];数学杂志;1990年02期 |
20 |
陈艳萍;可混溶驱动问题的超收敛性[J];系统科学与数学;1998年03期 |
|