硫铁矿烧渣水热法制备云母氧化铁及其基础理论研究
【摘要】:本文首次以硫铁矿烧渣为原料,采用水热法制备了云母氧化铁(MIO),开展了云母氧化铁的形成机理及其表面改性和防腐性能研究。
硫铁矿烧渣经硫酸酸浸后,以氨水为沉淀剂,在中性条件下采用水热法制得了云母氧化铁。在反应温度为230℃,n(Fe2+)/n(Fe3+)为0.07~0.1,总铁浓度为1.25mo1.L-’,氧化铁红晶种量为5g.L-1及反应时间为30 min的适宜工艺条件下制得云母氧化铁。所得的云母氧化铁为规则的正六边形单晶a-Fe203片状体,粒径约为0.5μm,径厚比为5左右;云母氧化铁中Fe203含量为98.54%,其产品质量达到涂料用云母氧化铁颜料国际标准(ISO 10601-2007)要求。
中性条件下,系统研究了Fe2+、Al3+的作用下云母氧化铁的形成机理。Fe2+催化了Fe(OH)3胶体的溶解,促进了α-Fe2O3晶体的生长。随着Fe2+浓度的增加氧化铁粒径逐渐增大,形成的氧化铁粒子为立方体,这是由于SO42-在氧化铁晶体{012}晶面上的吸附所致。A13+存在下,随着Al3+浓度的增加所得氧化铁晶胞参数a和c呈线性减少,其形貌为小片状体,这归功于A13+在氧化铁晶体(0001)晶面的吸附,抑制了氧化铁晶体在z轴方向的生长。模拟硫铁矿烧渣酸浸液制备云母氧化铁实验表明,云母氧化铁的形成归功于A13+在氧化铁晶体(0001)晶面的吸附和SO42-在{012}晶面的吸附而导致受限生长,云母氧化铁形成过程主要以溶解-再结晶机理为主,同时存在固相转化机理。
高碱性介质下,以硫铁矿烧渣酸浸液为原料,采用水热法制得云母氧化铁。NaOH浓度对云母氧化铁的制备起决定性作用,随着NaOH浓度的增加,氧化铁形貌由球形体变为片状体,其粒径逐渐增加。云母氧化铁适宜的制备工艺条件为:NaOH浓度≥7.0mol.L-1,总铁浓度为0.94~2.2mo1.L-1,反应温度≥200℃,反应时间为0.5h,搅拌速度为200r.min-1及不需加氧化铁红晶种。该条件下所得云母氧化铁颜色为钢灰色,粒子为均匀大小的片状体,粒径和径厚比分别为7μm、7.0;云母氧化铁中Fe203含量达99.34%,达到涂料用云母氧化铁颜料国际标准(ISO 10601-2007)要求。
高碱介质下研究了Al、Si对云母氧化铁晶体生长的影响。研究表明,Al存在下云母氧化铁片状体厚度变薄,且随着Al含量的增加,云母氧化铁粒子粒径逐渐减小,Al以[Al(OH)4]-形式吸附在氧化铁晶体(0001)晶面上;Si存在下阻碍了Fe(OH)3胶体向Fe203相转化,并随着Si含量的增加阻碍作用越强。
基于α-Fe203晶体的结晶形态系统地构建了云母氧化铁晶体生长条件,探讨出高碱介质下云母氧化铁的形成归功于OH-在α-Fe203晶体(0001)晶面上的强烈吸附,降低了(0001)面的晶面能,抑制了α-Fe203晶体沿z轴方向的生长,使(0001)面显露。
系统研究了云母氧化铁表面改性对亲油性和亲水性的影响。当硬脂酸钠用量为5.0%,球料比为8:1,球磨时间为2h时,云母氧化铁的亲油化度为43.5%,云母氧化铁由亲水性变为亲油性;当KH550用量为1.5%,球料比为8:1,球磨时间为1h时,改性云母氧化铁的初始浊度和静置60min后的浊度均达到最大值,其亲水分散性良好。IR和TG-DSC分析表明,硬脂酸钠改性的云母氧化铁,其表面-OH与硬脂酸发生了脂化反应,云母氧化铁表面带上-CH2-基团,表现出亲油憎水性;云母氧化铁经KH550改性,其表面-OH基团与KH550水解生成的硅醇成氢键结合,并脱水形成Si-O-Fe键。偶联剂高分子链通过空间位阻作用使云母氧化铁在水性介质中稳定分散。XRD和TEM分析表明改性后云母氧化铁晶型和形貌没发生改变。
借助电化学阻抗谱技术及涂层附着力分析研究了环氧MIO涂层的防腐性能,比较了不同形貌粒径的氧化铁环氧涂层的防腐性能。开路电位测量结果表明,MIO用量为50%的环氧涂层在3.5%NaCl溶液中浸泡72h后开路电位最高,其防腐性能最佳。电化学阻抗谱实验表明,MIO含量为50%的环氧涂层浸泡32d后涂层电阻最大,为3.5×106Ω·cm2,达到有机涂层阻抗值1.0×106Ω.cm2要求,具有较好的防腐性能。Machu实验和沸水浸泡实验表明,MIO含量为40%和50%的环氧涂层表面未出现起皮和鼓泡现象,具有较好的涂层附着力。不同粒径MIO环氧涂层和球形氧化铁环氧涂层在3.5%NaCl溶液浸泡10d后,粒径为7.0μm的MIO环氧涂层高频段的阻抗为6.1 0×106Ω·cm2,粒径为1.0μm的MIO环氧涂层高频段的阻抗为1.89×105Ω.cm2,环氧球形氧化铁涂层高频段阻抗为1.01×105Ω.cm2,其防腐性能依次降低。Machu实验和沸水浸泡实验表明, MIO环氧涂层的附着力强于球形氧化铁环氧涂层的附着力。
|
|
|
|
1 |
郑雅杰;刘昭成;;用水热法从硫铁矿烧渣制备氧化铁红[J];金属矿山;2008年02期 |
2 |
;关于硫铁矿渣的利用和处理[J];化工环保;1983年01期 |
3 |
杨智宽,祁守涛;用硫铁矿烧渣制取聚合硫酸铁[J];湖北化工;1994年04期 |
4 |
苗兴旺;;硫铁矿烧渣的综合利用[J];化工文摘;2003年11期 |
5 |
陶颖;硫铁矿烧渣中全铁分析方法的比较与评价[J];无机盐工业;2004年05期 |
6 |
龚竹青,郑雅杰,陈白珍,陈文汩;硫铁矿烧渣制备硫酸亚铁及效益估算[J];环境保护;2000年08期 |
7 |
邹光中,刘毅;硫铁矿烧渣酸解工艺研究[J];无机盐工业;2004年02期 |
8 |
左恕之;;从硫铁矿烧渣中回收黄金的探讨[J];湖南冶金;1982年02期 |
9 |
李导民;用硫铁矿烧渣制备铁系化工产品(下)[J];广东化工;1995年02期 |
10 |
金士威,易琼,包传平,张良钧;硫铁矿烧渣制高纯氧化铁红的研究[J];化工矿物与加工;2003年12期 |
11 |
郝艳玲,范福海;直接酸溶法浸取硫铁矿烧渣中铁的实验研究[J];岩石矿物学杂志;2004年03期 |
12 |
郑雅杰,陈白珍,龚竹青,陈文汨;硫铁矿烧渣制备聚合硫酸铁新工艺[J];中南工业大学学报(自然科学版);2001年02期 |
13 |
宁寻安,秦至谦,庄毅,朱又春;利用硫铁矿烧渣研制聚铁混凝剂[J];中国给水排水;2003年05期 |
14 |
罗道成,易平贵,刘俊峰;硫铁矿烧渣综合利用研究进展[J];工业安全与环保;2003年04期 |
15 |
;硫铁矿烧渣土法提炼铜[J];精细化工中间体;1972年02期 |
16 |
徐旺生;利用硫铁矿烧渣制备氧化铁红[J];武汉化工学院学报;1989年02期 |
17 |
冯俊瑜;用硫铁矿烧渣生产液体三氯化铁[J];硫酸工业;1994年03期 |
18 |
杜巧云,王建平;由硫铁矿烧渣制备聚合硫酸铁[J];平顶山师专学报;1995年S2期 |
19 |
陶颖;硫铁矿烧渣制备聚合硫酸铁工艺评述[J];化工环保;2000年05期 |
20 |
李明玉,刘佩红,汤心虎,张娜,刘惠璇,李德亮;硫铁矿烧渣一步法生产固体复合混凝剂及应用[J];硫酸工业;2003年05期 |
|