高分辨率遥感影像面向对象分类方法研究
【摘要】:遥感技术的巨大发展扩宽了对地观测的视野,给人们提供了极为丰富的地理信息。随着卫星传感器的空间分辨率不断提高,高分辨率遥感影像已经在城市规划、国土资源管理、地质调查、交通检测等区域性研究与相关的应用领域中扮演着重要角色。虽然遥感影像的分类技术取得了长足发展,但是已有的研究表明基于像元的高分辨率遥感影像分类存在明显的限制。为了克服基于像元的传统信息提取方法所面临的缺点,一种被称为面向对象图像分析(OBIA)的新方法应运而生。作为地理科学的一个分支,OBIA代表着遥感与地理信息系统学科发展的重要趋势。本文围绕着OBIA的主要研究内容与结论包括:
(1)基于分水岭变换和小波变换提出多尺度分割方法用于波段融合后的高分辨率多光谱影像。利用该方法进行分割的过程包括多尺度图像生成、图像分割、区域合并和结果映射等四个方面。采用相位—致模型多尺度地提取各近似子图的梯度,并逐个尺度地进行梯度融合。进而分析不同尺度与不同地物的局部梯度方差,选择最佳的小波分解尺度。通过移动阈值与扩展最小变换多层次地标记纹理和灰度的均质区域。以空间相邻关系、面积、光谱与纹理等因素多约束地合并最初的分割区域。处理边界像元将最初的结果投影到更高的尺度直到原始图像。实验结果表明所提方法能够应用到高分辨率影像的分割且可取得较准确的分割效果。
(2)基于对纹理频谱的分析提出一种高分辨率遥感影像最佳空间尺度的选择方法。分析了四种典型地物在傅里叶变换频域的频谱响应特性。采用点扩散函数对原始影像进行尺度扩展,进而根据不同尺度下影像纹理的径向与角向曲线变化情况选择最佳尺度。通过分析四种地物在6个尺度下的纹理特征可分性,说明本文方法能客观反映出地物的尺度效应,具备最佳尺度选择的可行性。进行了基于支持向量机的全色影像面向对象分类,实验结果表明在最佳尺度下可取得最佳精度。
(3)提出一种基于粗糙集理论的面向对象分类方法以区分高分辨率遥感影像上的不同地物。利用了不可分辨关系、上下近似集和知识约简等方式发现隐含在Gabor纹理特征内的分类规则。在对象光谱特征的初步分类结果基础上,依据纹理分类规则得到最终结果。本文重点提出一种适用于面向对象分类的连续区间属性离散化方法。实验表明本文方法可取得较好分类结果与较高分类精度。
(4)结合支持向量机技术与基于粗糙集的粒度计算,提出了一种新的高分辨率遥感影像面向对象分类方法。从多光谱波段数据中提取对象的光谱特征,并用Gabor滤波器组产生纹理特征,利用多核支持向量机进行初步的面向对象分类,对分类结果进行求交后生成信息颗粒。比较颗粒的特征均值与各样本中心的欧氏距离以区分颗粒类别,通过定量分析颗粒间的空间相邻关系判断待定类别的颗粒,利用少量人工交互的识别处理得到最终分类结果。与基于高斯径向基核函数的支持向量机和神经网络两种方法进行了对比,实验结果表明本文所提方法能够取得更好的分类效果。
最后,总结了本文的研究成果。下一步需要深入研究的工作有:1)整合多种方法、从多角度进行分析以提高分割的效果;2)将遥感中的尺度因素和具体应用的尺度要求进行统一考虑;3)如何在遥感信息提取中充分利用智能方法。
|
|
|
|
1 |
苗云鹏;张瑞红;赵保国;;高分辨率遥感影像信息提取方法研究[J];测绘与空间地理信息;2010年04期 |
2 |
刁淑娟;快鸟-2小型高分辨率遥感卫星发射成功[J];国土资源遥感;2001年04期 |
3 |
曹雪;柯长青;;基于对象级的高分辨率遥感影像分类研究[J];遥感信息;2006年05期 |
4 |
周小成;汪小钦;骆剑承;沈占锋;吴波;;基于对象关系特征的高分辨率光学卫星影像水上桥梁目标识别方法[J];遥感信息;2010年02期 |
5 |
路迪;中国台湾订购高分辨率遥感卫星[J];国际太空;1999年06期 |
6 |
王宏;沈占锋;骆剑承;刘钦甫;;基于基元的高分辨率遥感建筑物提取研究[J];微计算机信息;2008年21期 |
7 |
周小成;汪小钦;骆剑承;沈占锋;吴波;;结合对象关系特征的高分辨率卫星影像建筑物识别方法[J];国土资源遥感;2008年04期 |
8 |
刘雯;骆剑承;钟秋海;沈占锋;徐宪立;;基于特征基元的高分辨率遥感影像城市空间信息提取[J];地理与地理信息科学;2007年04期 |
9 |
肖鹏峰;冯学智;赵书河;佘江峰;;基于相位一致的高分辨率遥感图像分割方法[J];测绘学报;2007年02期 |
10 |
陈杰;邓敏;肖鹏峰;杨敏华;梅小明;刘慧敏;;基于分水岭变换与空间聚类的高分辨率遥感影像面向对象分类[J];遥感技术与应用;2010年05期 |
11 |
陈杰;邓敏;肖鹏峰;杨敏华;梅小明;;粗糙集高分辨率遥感影像面向对象分类[J];遥感学报;2010年06期 |
12 |
明冬萍,骆剑承,周成虎,汪闽,郑江,陈秋晓,沈占锋;高分辨率遥感影像信息提取及块状基元特征提取[J];数据采集与处理;2005年01期 |
13 |
孙灏;杜培军;赵卫常;;基于多分类器组合的高分辨率遥感影像目标识别[J];地理与地理信息科学;2009年01期 |
14 |
汪闽,骆剑承,明冬萍;高分辨率遥感影像上交通枢纽信息的自动提取方法[J];计算机工程与应用;2004年23期 |
15 |
余勇,钱建平,袁爱平;高龙金矿区高分辨率遥感线性构造分形特征及综合成矿预测[J];矿产与地质;2005年02期 |
16 |
满旺;;高分辨率遥感铀矿地质勘查技术体系研究[J];厦门理工学院学报;2009年03期 |
17 |
王林;;高分辨率遥感影像面向对象的分类方法[J];电子科技;2011年06期 |
18 |
崔明
,孙守迁
,潘云鹤;基于改进快速分水岭变换的图像区域融合[J];计算机辅助设计与图形学学报;2005年03期 |
19 |
王海霞;王昕;徐抒岩;闫得杰;;功率谱在高分辨率遥感相机检调焦中的应用[J];光学技术;2006年S1期 |
20 |
徐海卿;李培军;沈毅;;加入不变矩的高分辨率遥感图像分类[J];国土资源遥感;2008年02期 |
|