基于智能集成模型的苛性比值与溶出率软测量及应用研究
【摘要】:作为拜耳法生产氧化铝过程中的重要工序,高压溶出是一个极其复杂的冶金工业过程。在高压溶出过程中,苛性比值与溶出率决定了产品的产量、质量及碱耗。要实现高压溶出过程的优化控制,关键是能够在线检测苛性比值与溶出率。然而,目前没有任何测量仪表能够直接检测这两个值,而只能通过化学分析获得,因此存在很大的滞后,严重影响了高压溶出过程的优化控制。高压溶出过程具有机理复杂、非线性度高、耦合严重、时变、大滞后、大干扰等特点,因此任何单一的建模方法都难以建立精确的数学模型。本文在分析了高压溶出工艺机理的基础上,首次研究了苛性比值与溶出率的软测量技术,提出了基于智能集成模型的软测量方案,有效地实现了苛性比值与溶出率的在线检测,并据此对原矿浆配料进行了优化指导。论文主要工作和研究成果体现在以下几个方面:
(1) 基于对复杂工业过程特点及常用建模方法缺陷的分析,提出了智能集成软测量模型的基本框架,即给出了智能集成软测量模型的一般定义,总结了模型结构及算法的基本集成形式,并给出了基于智能集成模型的软测量系统的形式化描述、设计原则及设计步骤。
(2) 针对RPCL聚类算法速度慢、精度低的缺点,提出了基于样本空间分布的改进RPCL聚类算法(SDS-RPCL)。该算法在修正中心值过程中,根据样本空间的分布情况选取数据,减少了中心值朝类边缘移动的概率,因而能加快聚类速度,提高聚类精度。
(3) 在详尽分析高压溶出机理并总结专家知识的基础上,建立了苛性比值与溶出率的专家机理模型,该模型能够直观地反映各种因素对苛性比值与溶出率的影响。
(4) 为了修正专家机理模型的预测误差,针对苛性比值与溶出率软测量中输入变量多、样本分布广的特点,提出了分布式复合神经网络。该神经网络利用主元分析法将输入变量重组,并按重组后的主元变量所包含原始信息的多少将其分成若干组,分别用多个并联的复合神经网络逐步逼近苛性比值与溶出率;复合神经网络不仅简化了模型,而且由于对输入变量进行了适当的分组,因此能更合理地描述实
|
|
|
|
1 |
龚海洋;;如何提高拜尔法溶出的单套管预热温度[J];中小企业管理与科技(下旬刊);2011年06期 |
2 |
丁亚茹;;影响烧结法生产氧化铝的溶出因素[J];中国新技术新产品;2011年14期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|