局部间断有限元求解带有抛物边界层的奇异摄动方程
【摘要】:近年来,间断有限元方法(DG)已经成为科学计算领域的热门研究课题之一,在工程技术,自然科学等方面都有广泛的应用.本文采用局部间断Galerkin有限元方法(LDG)求解带有抛物边界层的奇异摄动对流扩散问题.在求解带有指数边界层的二维奇异摄动问题时,间断有限元在节点处的数值通量具有比连续有限元更强的超收敛性,能够更好地模拟解剧烈的变化.受其启示,本文我们将用LDG方法来求解带有抛物边界层的奇异摄动问题.证明其解的存在唯一性.在均匀网格Shishkin网格和局部加密的λ-等级网格下,我们的数值算例表明LDG方法不仅没有产生任何的振荡,而且还具有一致的超收敛性质.
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|