收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

多带小波理论及应用

全宏跃  
【摘要】: 小波分析是在20世纪80年代末迅速发展起来的一个新兴数学分支,小波分析的出现在科学研究领域引起了广泛的关注.在最近20多年,小波理论及应用得到了迅速的发展并取得丰硕成果.小波分析与其它分析方法一样,都是利用特殊基函数来展开和研究任意信号函数,但小波基与其它函数基相比具有一定的优势,例如,小波基具有良好的局部化性质、多分辨率功能及可同时作时频分析等优点.小波基性质的多样性是小波分析具有广泛应用领域主要原因,人们可以根据应用于领域的不同来构造相适应的小波基.小波基的构造和性质分析是小波理论研究的一个重要课题,也是小波应用的前提和基础.本论文主要是关于多进小波和多小波基构造理论的研究及小波基相关的性质分析.具体内容安排如下: 第1章介绍了小波分析发展历史、本论文研究目的、主要研究内容及得到相关主要结果. 第2章总结和探讨具有特殊性质多进尺度函数构造方法,着重研究了紧支正交对称多进尺度函数构造一般方法.在逼近则阶一定条件下,探索支集最短正交对称多进尺度函数构造一般程序. 第3章首先总结基于多分辨分析L~2(R)中的小波框架构造理论.利用UEP规则,研究正交对称多进小波基构造方法.利用多相矩阵酉矩阵分解结构,得到了一类正交对称小波滤波器簇角参数表示形式,根据角参数的选取可得到一系列性质不同正交对称多进小波系. 第4章提出了最优多进Haar小波概念,并讨论其所具有基本性质及构造方法.在图像压缩中,用实验数据说明了最优Haar小波变换相比于传统的离散余弦变换具有一定优势. 第5章利用小波矩阵之间一种运算,给出了具有特定结构的正交小波矩阵一种构造方法.着重研究成对对称和具有优美结构的多进小波函数的构造. 第6章首先总结了正交多小波一此基本理论及一些构造的方法.为提高正交对称多小波消失矩和逼近阶,研究一类正交对称多小波维数扩充的一种算法. 第7章是本文总结与展望,指出了与本文相关期待进一步研究几个问题. 本论文的主要创新之处如下: 1.给出了多进正交对称低通滤波器构造一般方法,得到了在正则阶一定条件下,支集最短正交对称尺度函数构造程序. 2.给出了偶数进低通滤波器对称应的多相向量一种特殊酉分解,得到了正交对称多进小波的高通滤波器的一种构造方法.得到了一类正交对称多进小波滤波器簇角参数表示形式.以3进小波为例,给出了奇数进正交对称小波多相矩阵酉扩充的一种算法. 3.提出了多进最优Haar小波概念和构造方法.用图像压缩效果的实验数据说明了最优Haar小波较传统离散余弦变换具有一定优势. 4.利用小波矩阵之间一种运算,得到了一类成对对称和优美小波构造方法.为提升正交对称多小波函数消失矩,提出了多小波维数扩充的一种算法.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 彭向阳;胡锡炎;张磊;;矩阵方程的正交对称与正交反对称最小二乘解[J];工程数学学报;2006年06期
2 全宏跃;王国秋;;一类对称正交多带小波的构造[J];应用数学学报;2008年04期
3 全宏跃;粟涓;;3带正交对称小波滤波器簇的构造[J];应用数学学报;2010年03期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国博士学位论文全文数据库 前4条
1 全宏跃;多带小波理论及应用[D];湖南师范大学;2009年
2 粟涓;特殊小波框架构造与性质分析[D];湖南师范大学;2013年
3 赵琳琳;特殊矩阵若干问题的研究[D];华东师范大学;2011年
4 肖庆丰;秩约束下几类矩阵方程问题及其最佳逼近问题[D];湖南大学;2009年
中国硕士学位论文全文数据库 前5条
1 毛斌;四进正交对称紧支小波的构造[D];北京交通大学;2014年
2 李红岩;正交对称多小波的构造及其应用[D];北京交通大学;2010年
3 夏劲松;多尺度函数与多维小波框架[D];汕头大学;2010年
4 袁春梅;多带二重正交多小波的构造[D];哈尔滨理工大学;2011年
5 胡婷婷;关于Parseval框架双向小波的一些研究[D];陕西师范大学;2013年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978