收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

多工序制造质量智能预测建模机理研究及应用

杨杰  
【摘要】:随着全球化市场竞争日益激烈,产品质量受到前所未有的重视。论文系统研究制造过程质量智能预测控制中的关键技术与实现方法,这对促进先进制造技术发展、智能预测理论及应用具有重要的学术价值和实际意义。 论文详细分析了制造质量波动特性,阐述了制造质量建模预测控制基本原理,从制造质量低维特征信息提取方法、制造质量智能预测建模方法、质量信息集成方法三个方面,对制造质量预测建模中关键问题的研究动态及国内外进展进行了分析,进一步展开了多工序制造质量智能预测建模机理研究及应用课题研究。主要工作包括: ⑴研究面向关键工序的多维制造质量数据模型构架。建立关键质量特性KQCs产品结构树映射模型,通过功能分解间接实现制造质量BOM中KQCs向产品结构树的映射,质量特性指标细分到每一个零部件,既体现公共KQCs,又表现个性KQCs;提出一种定性与定量相结合的多准则决策方法,避免主观臆断或仅考虑少数判读所带来的局限性;研究不同类型生产过程时间序列质量数据样本的在线抽取方法,通过引入维、维分层和度量概念,建立多维制造质量数据模型,使制造质量数据的描述结构化、规范化。 ⑵深入开展高维制造质量低维特征信息动态提取方法研究。提出将滑动数据窗采样和主元递推更新算法相结合,能够使主元模型自适应地跟踪数据样本的变化,有利于提取出动态制造过程中数量少但包含信息量大的质量特征;基于核函数PCA能够将复杂关联数据投影到线性可分的高维特征空间,提出通过将递归KPCA分解推广到核空间,给出了核形式的递归PCA算法,结合滑动窗采样,使主元分析的时间复杂度和空间复杂度较标准核函数PCA进一步减小。仿真结果表明,选取建模样本数为500时,使用递推更新算法能够比没有选用递推算法(样本数1000)效果更好,而且其SPE分析结果超出95%、99%控制线的点,分别减少了10%、8%;递推核函数PCA的T 2分析结果超过95%、99%的点数较标准核函数PCA分别减少了10%、7%;而SPE分析结果则相应较少了15%、4%。 ⑶系统研究基于Elman神经网络的智能质量预测控制方法。针对复杂产品制造过程中,质量变量、数据样本间时序相关性较强的特点,提出一个新型多通路反馈OHIF Elman神经网络结构,在Elman网络结构自反馈因子?基础上,引入反馈因子?、r ,形成输出层、隐含层类似“全反馈”拓扑结构,提高了预测精度;针对OHIF Elman神经网络结构关联层影响网络收敛性的问题,提出了LM-CGD算法以期加快收敛速度,将CDG用于求解包含Jacobi矩阵J k正则方程,可将计算复杂度由原求解方法O ( N36)降低到O (2 N 2);针对OHIF Elman网络隐含层中应用Sigmoid函数,权值矩阵阶数增加、难以建立出网络规模与可逼近分辨尺度的定量关系的问题,提出一种紧致型小波OHIF Elman网络,该方法充分利用小波神经网络权系数的线性分布及学习目标函数的凸性,可避免局部最优非线性优化问题。仿真结果表明,OHIF Elman网络应用LM-CGD算法,145 Epoch即可收敛,比应用L-M算法步长减少46.7%,应用GD、Newton算法甚至不收敛;小波Elman OHIF Elman网络MSE较RBF网络减小36.4%,较OHIF Elman网络减小12.9%,而收敛步长略高于OHIF Elman网络。 ⑷开展在线制造质量信息集成系统设计与实现方法研究。讨论在线制造质量信息集成三层体系架构,使现场监控层、企业监控层、远程监控层层内与层间建立高效信息传输通道;设计USB、RS232/422/484、模拟量与CAN总线间数据转换协议,讨论“现场总线+以太网+TCP/IP+OPC”方案,避免不必要资源竞争,提高效率并增强信息传送的安全性;确定XML数据交换接口模型和跨平台数据交换技术路线,实现基于UML用例图的系统需求细化、基于UML类图的数据模型所包含的框架内容及XML Schema对象逻辑关系的确定、UML对象模型向XML Schema映射,满足系统平台间信息无缝传递及互操作的需求;结合华南理工大学“985”建设内容,建立了一个制造质量在线检测实验平台。 ⑸开展智能预测建模方法在漏光度制造质量控制应用研究。基于活塞环漏光原因分析及AHP多准则决策体系,指出氮化工序、粗磨开口后定型、精珩外圆是制造过程的第一、第二、第三关键质量控制工序;以氮化关键工序为例,利用核函数主元分析法对六个主成分进行排序,发现氮化温度、氮化时间、催化剂三相为输入主元质量特征,并以氮化层硬度为输出,所建立的小波OHIF Elman、OHIF Elman神经网络预测模型,其预测准确度较标准Elman网络预测准确度分别提高22.3%、21.7%;智能质量预测方法在活塞环制造企业实施后优等品率由原来的75%提高到实施后的87%以上。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 张琦,邵立福;基于Elman神经网络的液压泵故障诊断模型研究[J];机床与液压;2004年10期
2 赵卓鹏;贾石峰;;基于Elman神经网络的风力发电机组齿轮箱故障诊断研究[J];伺服控制;2010年03期
3 王笑宇;肖洪祥;陆明涵;涂兵;;Elman神经网络在三相异步电机故障诊断中的应用[J];现代电子技术;2009年10期
4 杨开垧;;一种基于Elman神经网络的锅炉故障诊断方法[J];装备制造;2009年08期
5 杨嘉,吴祥生,王宁,张敏琦;基于Elman型神经网络的空调负荷预测模型[J];重庆大学学报(自然科学版);2002年08期
6 唐富华,郭银景,杨阳,康景利;一种改进的递归神经网络及其仿真研究[J];北京理工大学学报;2005年05期
7 雷铁安,吴作伟,杨周妮;Elman递归神经网络在结构分析中的应用[J];电力机车与城轨车辆;2004年05期
8 李海波;;高阶反馈型神经网络及其在优化计算中的应用[J];东南大学学报(自然科学版);1990年06期
9 朱铭铨,姬中岳,刘镜;神经网络与CIMS监控技术[J];中国机械工程;1992年03期
10 崔定军,杨尔辅,张振鹏,刘国球;基于神经网络的火箭发动机动态过程建模[J];航空动力学报;1995年03期
11 赵矿所,林钧清;神经网络在舰船噪声识别中的应用[J];舰船科学技术;1995年06期
12 刘磊,王康斌;基于神经网络的过程软测量[J];天津大学学报;1995年02期
13 孙道恒,胡俏,徐灏;固体力学有限元的神经计算原理[J];机械工程学报;1996年06期
14 代劲松,宋素芳东北大学;基于BP网络模型的汽轮发电机组的振动故障诊断[J];中国电力;1996年04期
15 黄敏超,王克昌,陈启智;火箭发动机基于神经网络非线性辨识的故障检测[J];中国空间科学技术;1996年06期
16 王少萍,王占林;液压泵故障诊断的神经网络方法[J];北京航空航天大学学报;1997年06期
17 谢寿生,樊思齐;自适应变结构神经网络在航空发动机故障诊断上的应用[J];航空动力学报;1997年04期
18 张伟;基于神经网络的机器人位姿逆解[J];机器人;1997年02期
19 黄文培,黄洪钟,王金诺;基于神经网络的机械结构系统优化问题的分解算法[J];机械工程学报;1997年04期
20 杨晓萍,孙超图,解建宝;电力变压器故障诊断的神经网络专家系统[J];西安理工大学学报;1997年03期
中国重要会议论文全文数据库 前10条
1 孟凡华;吴学礼;杜太行;;一种新型联想记忆神经网络在非线性系统辨识中的研究[A];'2003系统仿真技术及其应用学术交流会论文集[C];2003年
2 侯艳芳;冯红梅;;基于神经网络的调制识别算法的研究[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
3 沈建荣;杨林泉;陈琳;;神经网络的稳定性判据与区域经济结构调整[A];系统工程与可持续发展战略——中国系统工程学会第十届年会论文集[C];1998年
4 石山铭;李富兰;丁俊丽;;神经网络的知识获取[A];全国青年管理科学与系统科学论文集(第1卷)[C];1991年
5 吴清烈;徐南荣;;基于神经网络的一种多目标决策方法[A];复杂巨系统理论·方法·应用——中国系统工程学会第八届学术年会论文集[C];1994年
6 李晓钟;汪培庄;罗承忠;;神经网络与模糊逻辑[A];中国系统工程学会模糊数学与模糊系统委员会第五届年会论文选集[C];1990年
7 房育栋;余英林;;高阶自组织映射及其学习算法[A];1995年中国控制会议论文集(上)[C];1995年
8 王晓晔;杜朝辉;吕德忠;刘建峰;;神经网络模糊控制在温度控制系统中的应用[A];1997中国控制与决策学术年会论文集[C];1997年
9 金龙;吴建生;;基于遗传算法的神经网络短期气候预测模型(摘要)[A];新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“气候系统与气候变化”分会论文集[C];2003年
10 申伟;张元培;;基于MATLAB的自适应神经网络模糊系统(ANFIS)的应用[A];《制造业自动化与网络化制造》学术交流会论文集[C];2004年
中国博士学位论文全文数据库 前10条
1 杨杰;多工序制造质量智能预测建模机理研究及应用[D];华南理工大学;2011年
2 李鹏华;量子计算在动态递归与自组织神经网络中的机理及应用研究[D];重庆大学;2012年
3 刘志祥;深部开采高阶段尾砂充填体力学与非线性优化设计[D];中南大学;2005年
4 戴雪龙;PET探测器神经网络定位方法研究[D];中国科学技术大学;2006年
5 马戎;智能控制技术在炼钢电弧炉中的应用研究[D];西北工业大学;2006年
6 文敦伟;面向多智能体和神经网络的智能控制研究[D];中南大学;2001年
7 吴大宏;基于遗传算法与神经网络的桥梁结构健康监测系统研究[D];西南交通大学;2003年
8 杜文斌;基于神经网络的冠心病证候诊断标准与药效评价模型研究[D];辽宁中医学院;2004年
9 熊雪梅;参数化模糊遗传神经网络及在植物病害预测的应用[D];南京农业大学;2004年
10 李智;电站锅炉燃烧系统优化运行与应用研究[D];东北大学;2005年
中国硕士学位论文全文数据库 前10条
1 杨立儒;基于神经网络的电路故障诊断的研究与实现[D];解放军信息工程大学;2010年
2 刘兰兰;基于神经网络和遗传算法的H型钢粗轧工艺参数优化研究[D];山东大学;2011年
3 田鹏明;基于神经网络的振动主动控制研究[D];太原理工大学;2012年
4 姜宇;发动机裂解设备故障诊断技术的研究[D];吉林大学;2012年
5 杨春;基于神经网络的非线性预测控制算法的研究[D];太原理工大学;2012年
6 邢远凯;基于决策树和遗传算法的神经网络研究及应用[D];浙江大学;2010年
7 高宝建;基于神经网络的月降水预报模型在洪泽湖的应用研究[D];南京信息工程大学;2012年
8 陈少华;基于Hopfield神经网络控制系统的研究[D];山东科技大学;2010年
9 来建波;基于神经网络的路段行程时间预测研究[D];云南大学;2011年
10 闫超;基于BP神经网络的煤矿深埋硐室软岩流变参数反演分析[D];安徽理工大学;2011年
中国重要报纸全文数据库 前10条
1 于翔;数字神经网络中的协同应用[N];网络世界;2009年
2 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年
3 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年
4 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年
5 本报首席记者 任荃 实习生 史博臻;轨交“神经网络”触动创新神经[N];文汇报;2011年
6 计算机世界实验室 韩勖;当布线系统遭遇神经网络[N];计算机世界;2009年
7 曹建兵 李祖兵 特约记者 何天进 本报记者 于莘明;给导弹植入“神经网络”[N];科技日报;2005年
8 谭薇;“潮湿计算机”:拥有人类智慧的超级大脑[N];第一财经日报;2010年
9 韩婷婷;ICT强壮奥运“神经网络”[N];通信产业报;2007年
10 ;人老了,大脑仍能形成新的神经网络[N];新华每日电讯;2004年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978