混凝土中氯离子的扩散和分布行为及其影响因素研究
【摘要】:氯离子扩散进入混凝土中并引起钢筋的锈蚀是钢筋混凝土结构耐久性最主要的问题,研究氯离子在混凝土中的扩散和分布规律,可为钢筋混凝土结构的使用状况评价及高耐久性混凝土的配合比设计提供理论基础。本研究采用了自然浸泡和电场加速两种方式来实现氯离子向混凝土中的扩散,研究不同扩散方式对混凝土中氯离子的扩散行为和分布规律的影响,进而研究氯离子进入混凝土后各种存在形态的氯离子之间的相互关系及不同条件(水胶比、矿物掺合料及掺量、龄期、碳化)对氯离子扩散和分布规律的影响,并基于粉体颗粒RRB(Rosin-Rammler-Bennet)分布原理及四棱台骨料人为的设定界面过渡区ITZ(Interfacial transition zone)来进一步研究孔隙结构及ITZ特性对氯离子扩散行为和分布的影响,为高耐久性混凝土的配合比设计、制备、施工和维护提供了理论基础。本文主要的研究工作和结论有:(1)通过对比自然浸泡和电场加速两种氯离子扩散方式,研究电场对不同矿物掺合料混凝土中氯离子的扩散行为和分布的影响。结果表明,电场基本上没有改变混凝土中氯离子的分布,特别是总氯离子与自由氯离子及固化氯离子之间的关系;此外,总氯离子是影响自由氯离子和固化氯离子的最重要因素,而水胶比、矿物掺合料及掺量、龄期等因素,主要是通过改变混凝土的孔隙结构来改变进入混凝土中的总氯离子,从而改变自由氯离子和固化氯离子;基于线性等温吸附原理和化学反应平衡原理建立了各种存在形态的氯离子(自由氯离子、固化氯离子、物理吸附氯离子、化学固化氯离子和有害氯离子)和总氯离子之间的关系模型,其中物理吸附氯离子和化学固化氯离子分别占固化氯离子的29%和71%,通过简单测定总氯离子浓度,可通过模型计算出其它各种存在形态的氯离子浓度,为各种存在形态的氯离子浓度的确定提供了便捷的计算方法。(2)采用电场来实现氯离子在混凝土中的加速扩散,用于研究不同碳化程度的混凝土中氯离子的扩散行为和分布规律。结果表明,早期碳化促进了混凝土孔隙的细化并提高了对氯离子的固化能力,从而降低了进入混凝土中的氯离子浓度且提高了混凝土抗氯离子扩散的能力;相反,碳化后期则导致混凝土孔隙粗化和氯离子固化能力的降低,从而提高了进入混凝土中的氯离子浓度且降低了混凝土抗氯离子扩散能力;在碳化后期但未完全碳化的混凝土内部,存在完全碳化区、早期碳化区和非碳化区三个区域,使得在完全碳化区和早期碳化区之间形成一个孔隙结构完全不同的界面,而界面早期碳化区一侧孔隙结构较完全碳化区密实,使氯离子在界面处的扩散受阻,且在界面的早期碳化区一侧由于毛细孔吸附和氯离子固化能力的提高,使氯离子在扩散路径上出现了浓度峰值。(3)通过不同水胶比、矿物掺合料和龄期来调控混凝土的孔结构,从而研究孔结构分布对氯离子扩散行为的影响。结果表明,矿物掺合料的活性越高,孔隙的细化程度越高,混凝土抗氯离子扩散能力越高,且不同配合比的混凝土的孔径分布均可采用改进的粉体颗粒RRB模型进行拟合,获得的孔径分布模型参数并结合孔隙率、孔表面分形维数和孔轴线分形维数建立的孔结构参数模型,与氯离子扩散系数具有很好的指数关系,揭示了混凝土孔结构参数与氯离子扩散系数之间的定量关系。(4)通过不同活性的矿物掺合料来调控胶凝材料的水化反应速率,以产生不同的ITZ特性和孔结构,并通过四棱台骨料来人为的设定ITZ作为氯离子扩散的快速通道,从而定量研究各混凝土的ITZ特性及其对氯离子扩散行为的影响。结果表明,混凝土内部孔隙结构决定了ITZ的特性,在普通混凝土中掺入不同活性的矿物掺合料,活性越高,水化反应程度越大,孔隙结构越密实,ITZ的氢氧化钙晶体取向性指数及ITZ厚度越小,且ITZ孔隙结构和氯离子扩散系数越接近于砂浆内部;ITZ厚度在20~42μm之间,其氯离子扩散速率是砂浆基体的30~70倍,为氯离子的扩散提供了快速通道,但ITZ所占的体积远远小于砂浆基体,因此仍是较大体积分数的砂浆基体决定了混凝土中氯离子的扩散速率,所以改善砂浆基体孔隙结构是提高混凝土抗氯离子扩散性能的最有效的方法。