针对电力系统短期负荷预测的研究
【摘要】:电力系统短期负荷预测是电力部门的一项重要工作,对其预测方法的研究一直为人们所重视。短期负荷预测的准确与否将直接关系到电力系统的安全运行和经济调度,便于更合理地安排电网设备调度及检修计划;还能提高电力系统运行的稳定性,减少电网的发电成本。随着我国区域性电力市场的逐步建立和完善,短期负荷预测工作将在电力市场运营中占据十分重要的地位。
本文首先分析了电力系统负荷的组成、特点,进一步阐述了当今多种电力负荷预测方法的差异、优缺点,着重阐述了人工神经网络(ANN)进行负荷预测的基本原理,并针对一个实际地区电力负荷的具体情况,提出用人工神经网络建立模型来预测其负荷的变化。其次,该模型将电力负荷的变化考虑成:系统的基本负荷、温度的差异、天气的改变和日期的类型(工作日与节假日),这些主要因素共同决定的。因此,本文采用改进的三层BP型人工神经网络来建立负荷预测模型,以上述影响负荷的主要因素作为数据样本,进行神经网络的自我训练和学习,并且在不断地训练和学习的过程中引入误差反方向传播算法(即BP算法)来修正神经网络的连接权重,从而达到对负荷预测模型的改良和完善,进一步贴近实际的负荷变化。同时,在负荷预测模块运行结束后,本文还将因电力线路或设备检修损失的负荷量也作为影响因素进行了考虑,从而得出更精确的预测负荷值。
在实际的负荷预测算例结果与分析中,上述的预测思路得到了较好的印证,
其预测的精度也较高,完全满足了电力部门运行和经济调度的实际要求,减少了
购电成本,提高了电力部门的经济效益和电网调度技术人员的工作效率,保障了
电网运行的安全。
关键词:短期负荷预测人工神经网络BP算法