收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

外部激励和惯性项对时滞神经网络动力学行为的影响研究

刘群  
【摘要】: 众所周知,在网络系统中时滞的引入往往会带来系统动力学性质上很大的变化,而由于信号传输速度的有限性,时滞对系统的影响是不得不考虑的一个因素。由于时滞神经网络是时滞大系统的一个重要组成部分,所以同样也具有非常丰富动力学性质,尤其是鉴于它在信号处理、动态图象处理以及全局优化等问题中的重要应用。时滞神经网络的动力学问题一直都是学术界广泛关注的话题,特别是对时滞神经网络平衡点的全局稳定性、局部稳定性(包括渐近稳定性、指数稳定性、绝对稳定性)以及时滞神经网络的分岔和混沌等动力学现象,都得到了广大科学工作者的深入研究并取得了一系列深刻而有实际意义的理论成果。本论文主要对两种类型的时滞神经网络(即Hopfield神经网络和惯性神经网络),从两个方面即自治系统平衡点的全局稳定性以及自治系统周期解的局部稳定性、Hopf分岔、共振余维二分岔和混沌,以及非自治系统周期解的局部稳定性和Hopf分岔进行了一系列的研究,获取了一些有意义的成果。 本论文的主要内容和创新之处可概述如下: ①获得了分布时滞和有限时滞神经网络与时滞相关的全局稳定性和局部稳定性判据 由于神经元之间有限的信息传输速度以及电路系统中放大器的有限开关速度,同时因为存在大量的并行旁路以及各种不同长度和大小的轴突神经网络在空间上的扩展,信号传输不可能在一定时间内完成,因此建模上仅仅依靠有限时滞(常数时滞或者时变时滞)是不完整的,较精确的模型应该还应该包括无限时滞(分布时滞)。本论文中采用通常的Lyapunov函数构造法分别对带分布时滞或有限时滞的神经网络模型进行探讨,获得了与时滞相关的全局稳定性和局部稳定性判定准则。本研究的意义有两个方面:一、从两种时滞的角度分别给出稳定性的判定准则,这样对于更加精确的建模并预测模型从稳定至不稳定的演变过程是十分有益的;二、给出了与时滞相关的稳定性判据,这种准则对于小时滞神经网络不会过于苛刻,对系统参数也没有过多的限制,有利于预测系统模型动力学行为的鲁棒性和稳定性。 ②对惯性时滞神经网络的局部稳定性和Hopf分岔进行了研究 惯性时滞神经网络具有较强的生物学背景,因此在满足一定条件的情况下,神经元的电路实现可以通过加入一个电感完成类似于带通滤波器、电调谐或者时空过滤的作用。由此我们研究了一个带有惯性项的时滞神经网络模型的局部稳定性和Hopf分岔,并用中心流形定理和正规型理论确定了分岔周期解的稳定性和分岔方向。其意义在于:一、由于Hopf分岔与振荡现象密切相关,对这种小规模网络Hopf分岔的研究可以使我们更好地解释现实世界中的许多大规模网络,如Internet、电网、生物神经网络中发生的对参数敏感的现象。二、若能深入地了解小规模网络中的分岔现象和规律,则通过利用比较成熟的分岔控制理论和方法,我们就可以将现实世界中大规模网络控制到所期望的有利的状态中去。 ③对惯性神经网络的共振余维二分岔的研究 如何在人工神经网络系统中去预测并避免共振是十分重要的一个课题。在本论文中对惯性时滞神经网络模型进行了分析,在以时滞参数作为分岔参数的条件下,将研究重点放在对模型特征方程的根的讨论上,从而获取系统能够出现两对纯虚根的条件,当频率比ω1 :ω2为有理数时系统将会产生共振现象,所以本现象的研究结果以及分析方法可以为系统振幅的耦合和频率同步以及减少系统出现的共振提供理论依据。 ④对惯性时滞神经网络在外部周期激励影响下的局部稳定性和Hopf分岔的研究 根据生物学实验,神经元在被施予外部周期激励时会产生同步振荡现象。因此作者研究了当惯性时滞神经网络引入了外部周期激励后,该非自治系统的局部稳定性以及周期解的存在和方向性。通过使用中心流形定理以及非线性振动中平均法技术的结合,我们首先获得了模型的中心流形,进而获取其平均方程,利用对方程的雅可比矩阵的分析得到分岔方程,由该分岔方程分析出周期解的方向和分岔点。由于目前主要的分岔理论都是针对自治系统的分岔问题,对非自治系统的分岔问题讨论的很少,本论文对这种类型系统的动力学性质做了一个初探,有利于为实际应用提供帮助。 ⑤对Hopfield网络模型在时滞以及外部周期激励的共同影响下的局部稳定性和Hopf分岔的研究 对于Hopfield神经网络模型,它的应用已经渗透到生物学、物理学、地质学等诸多领域,并在智能控制、模式识别、非线性优化等方面获得了广泛的应用,针对这种实际应用非常广泛的网络模型讨论它的动力学行为是非常有意义的。本论文对该模型除了引入时滞外还增加了外部的周期激励,同时采用中心流形定理结合平均法获得系统的分岔周期解。虽然本论文该内容的研究方法与上一章的内容类似,但是因为该网络模型在实际应用中十分广泛,更具有重要意义。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 季策,张化光,王占山;具有不对称结构的广义时滞神经网络的动态分析[J];控制与决策;2004年12期
2 谌新年;刘国荣;;高阶时滞神经网络模型的全局指数稳定性[J];湖南大学学报(自然科学版);2007年06期
3 王娜;杨振宇;;脉冲时滞神经网络的稳定性分析[J];吉林工程技术师范学院学报;2009年01期
4 邵晋梁;黄廷祝;;变时滞神经网络鲁棒稳定的一个新判据[J];电子科技大学学报;2010年04期
5 廖晓峰,李学明,吴开贵;时滞神经网络稳定性、分岔与混沌的研究进展[J];重庆大学学报(自然科学版);2003年07期
6 余昭旭,吴惕华;一类时滞神经网络系统的指数稳定性[J];控制理论与应用;2005年02期
7 张海涛;王婷;费树岷;李涛;;具有混杂耦合的耦合时滞神经网络同步的进一步分析(英文)[J];Journal of Southeast University(English Edition);2010年03期
8 孟益民,黄立宏,刘开宇;二元双阈值时滞神经网络模型解的渐近性[J];应用数学学报;2003年01期
9 王占山,张化光;多时变时滞神经网络的全局指数稳定[J];吉林大学学报(工学版);2005年06期
10 赵阳;;基于时滞网络的ANN系统辨识方法研究[J];陕西国防工业职业技术学院学报;2009年04期
11 罗琦;邓飞其;包俊东;;随机分布参数型Hopfield时滞神经网络的稳定性[J];数学物理学报;2006年06期
12 朱文莉,张杰;变系数时滞神经网络的周期解与稳定性[J];电子科技大学学报;2005年01期
13 向红军,王金华;多时滞神经网络关于滞量上界的一个估计[J];河南师范大学学报(自然科学版);2005年04期
14 赵阳;;基于时滞网络的ANN系统辨识方法研究[J];科技创业月刊;2009年09期
15 张栋;徐鉴;;超混沌时滞神经网络的同步及其仿真[J];系统仿真学报;2010年03期
16 王慧;李传东;;脉冲对时滞细胞神经网络的镇定影响[J];重庆大学学报;2008年09期
17 周冬明,李泰良;时滞神经网络模型全局渐近稳定性的一个新的充分条件[J];云南大学学报(自然科学版);1998年01期
18 陈万义;关于时滞神经网络的全局渐近稳定性[J];南开大学学报(自然科学版);1999年04期
19 曹进德,林怡平;一类时滞神经网络模型的稳定性[J];应用数学和力学;1999年08期
20 邱亚林;一类时滞神经网络模型的稳定性[J];四川师范大学学报(自然科学版);2000年01期
中国重要会议论文全文数据库 前1条
1 茅晓晨;;时滞耦合神经网络的非线性动力学[A];The 5th 全国动力学与控制青年学者研讨会论文摘要集[C];2011年
中国博士学位论文全文数据库 前10条
1 楼旭阳;复杂神经网络动力学机制及其应用研究[D];江南大学;2009年
2 籍艳;几类时滞系统的稳定与同步[D];江南大学;2010年
3 茅晓晨;四维时滞神经网络的动力学研究[D];南京航空航天大学;2009年
4 刘国权;随机中立型时滞神经网络的稳定性研究[D];重庆大学;2011年
5 田俊康;几类变时滞神经网络的稳定性研究[D];电子科技大学;2013年
6 钟世刚;逆Lipschitz条件下脉冲神经网络稳定性研究[D];重庆大学;2011年
7 周小兵;时滞神经网络的动力学研究[D];电子科技大学;2008年
8 王林;时滞神经网络的稳定性理论[D];湖南大学;2002年
9 周进;两类重要非线性模型的动力学行为的研究[D];上海大学;2003年
10 刘德友;几类时滞神经网络稳定性的研究[D];燕山大学;2006年
中国硕士学位论文全文数据库 前10条
1 穆文英;时滞神经网络的稳定性与混沌同步及其应用[D];江南大学;2011年
2 李大虎;几类时滞神经网络的稳定性分析[D];湖北师范学院;2012年
3 吴文娟;几类时滞神经网络稳定性的分析[D];燕山大学;2012年
4 徐晓峰;三元中立型时滞神经网络模型的性质分析[D];东北林业大学;2011年
5 雷瑞兴;时滞神经网络的稳定性分析[D];陕西师范大学;2011年
6 郑飞艳;几类时标时滞神经网络模型的定性性质[D];广州大学;2010年
7 任睿超;两类高维时滞神经网络模型的Hopf分支[D];西北大学;2011年
8 李倩倩;中立型时滞神经网络的稳定性分析[D];曲阜师范大学;2011年
9 蒋葛利;马尔科夫跳变时滞神经网络稳定性分析与状态估计[D];杭州电子科技大学;2014年
10 张静文;基于时滞神经网络的二次规划的全局最优性条件[D];燕山大学;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978