收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于地形复杂度的LiDAR点云简化方法研究

张倩宁  
【摘要】:LiDAR(Light Detection and Ranging)是一种利用全球定位系统、惯性测量装置、激光扫描测距系统和成像装置,对被测物体表面信息进行测量的技术。作为一种新兴技术,LIDAR技术具有自动化程度高、数据生产周期短、受外界环境影响小、精度较高等优点。但是LiDAR技术获取的点云数据量巨大,在构建不同尺度的DEM时,大量的点云数据对于提高DEM精度没有明显的作用,反而会导致数据处理速度急速下降。因此对LiDAR点云数据进行抽稀简化很有必要。在LiDAR点云简化过程中,点的取舍准则直接决定保留点的分布和质量状况。一般情况下,点的取舍准则是基于地形特征设定的。目前大多数的LiDAR点云简化算法都是基于单一地形特征因子实现点云简化,但是单一地形特征因子无法全面综合地描述地形特征,故提出一个可以综合评判地形特征的地形复杂度指标是至关重要的。本文选取坡度S、地形起伏度Cur、地形粗糙度Rel和全曲率Rou四个单一地形因子指标,采用主成分分析方法,提出地形复杂度指标模型,构建了一个地形复杂度指标C,并得到C与S、Cur、Rel口Rou之间的经验公式。选取具有典型地形特征的实验区域,计算C,得到C与地形特征的对应关系。最后选取实验区域对地形复杂度指标与地形特征之间的对应关系进行验证,实验结果表明,构建的地形复杂度指标能够有效地描述地形特征,且与地形特征之间的对应关系是合理的。基于构建的地形复杂度指标C,本文提出了一种新的LiDAR点云简化方法TCthin。TCthin方法根据设计的点云采样准则,基于包围盒算法原理实现点云简化。实现思路是首先基于低分辨率DEM计算C值;然后根据目标简化尺度对LiDAR点云数据划分简化格网,并与C值相关联;最后根据C值决定点云的取舍,当0=C0.5时,每个简化格网上保留高程Z均值点,当0.5=C


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 高恩阳;郑昊鸿;;点云数据滤波方法综述[J];科技资讯;2012年33期
2 龚书林;;三维激光点云处理软件的若干关键技术[J];测绘通报;2014年06期
3 赵强;彭国华;王锋;;点云精简的一种方法[J];西南民族大学学报(自然科学版);2006年05期
4 李德江;张延波;于曼竹;姜丽丽;曲雪光;;基于扫描模式的点云修复技术研究[J];测绘与空间地理信息;2011年06期
5 蔡来良;李儒;;点云数据处理算法与实现初步研究[J];测绘通报;2012年S1期
6 詹庆明;张海涛;喻亮;;古建筑激光点云-模型多层次一体化数据模型[J];地理信息世界;2010年04期
7 曾敬文;朱照荣;丁锐;;基于立方体网格的数据点云约简和体积计算方法[J];测绘科学;2008年06期
8 杨欣;姚海燕;;平面点云边界参数识别[J];中国西部科技;2009年27期
9 孙瑞;张彩霞;;点云数据压缩算法综述[J];科技信息;2010年32期
10 张毅;闫利;;地面激光点云强度噪声的三维扩散滤波方法[J];测绘学报;2013年04期
11 盛业华;张凯;张卡;;多站拼接后三维激光扫描点云的消冗处理[J];测绘通报;2010年03期
12 程效军;李伟英;张小虎;;基于自适应八叉树的点云数据压缩方法研究[J];河南科学;2010年10期
13 吴胜浩;钟若飞;;基于移动平台的激光点云与数字影像融合方法[J];首都师范大学学报(自然科学版);2011年04期
14 张巧英;陈浩;朱爽;;密度聚类算法在连续分布点云去噪中的应用[J];地理空间信息;2011年06期
15 秦高德;曾煌兴;徐兵;;交互式点云建模系统[J];数学的实践与认识;2013年03期
16 朱林华;蔡勇;;一种节省内存的点云中K最近邻算法[J];兵工自动化;2008年07期
17 施晓磊;赵翠莲;荣坚;范志坚;;基于平面层结构勘察的点云快速分割[J];现代机械;2010年05期
18 李德江;殷福忠;孙利民;;基于特征点的点云压缩方法研究[J];测绘通报;2012年01期
19 宋杨;;基于线性八叉树的点云简化与特征提取研究[J];广东科技;2012年17期
20 闫利;谢洪;胡晓斌;鲍秀武;;一种新的点云平面混合分割方法[J];武汉大学学报(信息科学版);2013年05期
中国重要会议论文全文数据库 前10条
1 李文涛;韦群;杨海龙;;基于图像的点云生成和预处理[A];2011年全国通信安全学术会议论文集[C];2011年
2 蔡来良;李儒;;点云数据处理算法与实现初步研究[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
3 马国庆;陶萍萍;杨周旺;;点云空间曲线的微分信息计算及匹配方法[A];第四届全国几何设计与计算学术会议论文集[C];2009年
4 江倩殷;刘忠途;李熙莹;;一种有效的点云精简算法[A];第十五届全国图象图形学学术会议论文集[C];2010年
5 解辉;张爱武;孟宪刚;;机载激光点云快速绘制方法[A];第二十五届全国空间探测学术研讨会摘要集[C];2012年
6 李凯;张爱武;;基于激光点云的粮仓储粮数量测量方法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
7 朱晓强;余烨;刘晓平;袁晓辉;Bill P.Buckles;;基于航拍图像和LiDAR点云的城市道路提取[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
8 刘虎;;基于线性八叉树的点云简化与特征提取研究[A];促进科技经济结合,服务创新驱动发展——蚌埠市科协2012年度学术年会论文集[C];2012年
9 李滨;王佳;;基于点云的建筑测绘信息提取[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
10 杨雪春;;反求工程建模中点云切片技术研究[A];全国先进制造技术高层论坛暨第八届制造业自动化与信息化技术研讨会论文集[C];2009年
中国博士学位论文全文数据库 前10条
1 彭检贵;融合点云与高分辨率影像的城区道路提取与表面重建研究[D];武汉大学;2012年
2 刘涌;基于连续序列自动快速拼接的全方位三维测量技术研究[D];西南交通大学;2013年
3 袁小翠;产品表面缺陷视觉检测数据处理关键技术研究[D];南昌大学;2015年
4 赖祖龙;基于LiDAR点云与影像的海岸线提取和地物分类研究[D];武汉大学;2013年
5 韩峰;基于点云信息的既有铁路状态检测与评估技术研究[D];西南交通大学;2015年
6 金龙存;3D点云复杂曲面重构关键算法研究[D];上海大学;2012年
7 李扬彦;基于点云的三维重建与形变事件分析[D];中国科学院深圳先进技术研究院;2013年
8 杨德贺;面向虚拟测方系统的点云聚类与拟合理论[D];中国矿业大学(北京);2014年
9 何朝明;离散点云处理的关键技术研究[D];西南交通大学;2007年
10 孟凡文;面向光栅投影的点云预处理与曲面重构技术研究[D];南昌大学;2010年
中国硕士学位论文全文数据库 前10条
1 龚硕然;基于Delaunay三角剖分的点云三维网格重构[D];河北大学;2015年
2 杨红粉;频域技术应用于点云配准研究[D];北京建筑大学;2015年
3 段红娟;点云图像交互式曲线骨架提取技术及其应用[D];西南交通大学;2015年
4 张永恒;散乱点云数据配准方法研究[D];长安大学;2015年
5 吴爱;面向特征拟合的点云简化方法研究[D];中国地质大学(北京);2015年
6 薛广顺;基于立体视觉的牛体点云获取方法研究与实现[D];西北农林科技大学;2015年
7 胡诚;精度约束下地表LiDAR点云抽稀方法研究[D];西南交通大学;2015年
8 余明;三维离散点云数据处理技术研究[D];南京理工大学;2015年
9 陈星宇;基于三维彩色点云的地形分类方法研究[D];南京理工大学;2015年
10 朱东方;基于复杂拓扑结构点云的曲线拟合研究与应用[D];山东大学;2015年
中国重要报纸全文数据库 前2条
1 曹裕华 高化猛 江鸿宾;激光点云 亦真亦幻[N];解放军报;2013年
2 中国工程院院士 刘先林;四维远见的装备创新[N];中国测绘报;2012年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978