收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

微生物纤维素及其氧化衍生物的合成与性能研究

冯玉红  
【摘要】:本论文研究内容属于国家863项目“生物法制备的纳米材料及在纳米中药中的应用”(2002AA302212)的组成部分。论文从三方面围绕合成和开发微生物纤维素生物材料的主题开展研究。通过系统研究椰子水培养体系木醋杆菌合成微生物纤维素凝胶及其性能,找到了优化的种子培养基和合成培养基,实现了低成本高产量合成微生物纤维素;分离选育出变异的产纳米短纤维的木醋杆菌菌株,控制合成实现了生物法制备纳米微生物纤维素材料,实现了木醋杆菌控制合成制备期望性能的纤维素材料,对其分离工艺和性能进行了研究;制备出了微生物纤维素二醛衍生物医用吸附功能材料,为多方面开发微生物纤维素作为生物材料的应用做了深入的基础研究。 首先,利用海南椰子水资源为原料,采用自主选育培养的木醋杆菌(A. xylinum),从培养基椰子水的营养组分、种子培养基的组成优化、合成培养基的优化、合成过程的条件优化、静态合成动力学、以至采用糖蜜废水部分替代椰子水培养基等多方面对大分子微生物纤维素凝胶的合成及其性能进行了系统研究。 椰子水富含碳水化合物、氨基酸、无机盐、维生素等营养物质,发酵后产生的有机酸与其盐形成了一个天然的缓冲体系,能够保证木醋杆菌生长环境的稳定,也可被木醋杆菌用作碳源,所以发酵后的椰子水更有利于木醋杆菌合成纤维素。这是本研究首次明确指出的。 为了制备优良的木醋杆菌试管斜面种,对种子培养基的组成进行优化研究,结果表明:硫酸铵0.2%,硫酸镁0.05%,琼脂2%,以发酵2天的椰子水加至足量,pH值5.0,作为木醋杆菌斜面培养基制备的试管种斜面种活力强、不易退化。 对以椰子水为主要培养基质的合成体系对合成微生物纤维素的影响进行优化研究,结果表明,影响纤维素凝胶产量的因素依次为:椰子水用量醋酸钠(增效因子)硫酸铵蔗糖磷酸二氢钾。影响凝胶中纤维素含量的因素依次为:椰子水醋酸钠蔗糖磷酸二氢钾、硫酸铵。优化的培养基组成为:发酵椰子水50%,蔗糖4%,硫酸铵0.5%,醋酸钠0.2%,磷酸二氢钾0.05%,最适pH值为4.2,最佳培养温度30℃,宜采用种龄3天的菌种,接种量5%,发酵培养7天。优化条件下的木醋杆菌合成微生物纤维素产量可达737g/L湿重、4.5g/L干重。这无论从成本和限定时间内的产量都比其它培养体系有优越性。 对木醋杆菌静态合成动力学研究建立了菌株的生长动力学、产物生成动力学、基质消耗动力学模型。此为发酵过程中菌体浓度、基质浓度、pH值等最佳工艺参数的确定提供了理论基础。 采用糖蜜酒精废水部分代替椰子水合成了微生物纤维素,糖蜜废水用量为30%仍然合成得到较佳的产量。 IR结够测试证明了微生物纤维素凝胶的β-吡喃糖结构。X—射线衍射分析计算了微生物纤维素的晶胞参数,表明了合成微生物纤维素晶型主要为I型结晶。 第二,选育自然变异的产纳米短纤维的木醋杆菌高产菌株,实现了生物法制备纳米纤维素材料。 通过自然变异选育出的高产纳米短纤维微生物纤维素的菌株,由中国科学院微生物所鉴定,命名为HN001号。对HN001菌株的形态特征、主要生理生化特性,功能基因数量等进行了研究,HN001的GC碱基对的数量明显多于退化菌株,说明了某些功能基因数量较多,产纤维素能力较强。 以椰子水为培养基,通过木醋杆菌HN001静态培养生物合成了水溶性低分子质量纳米微生物纤维素(NMC)。对于高产NMC的适宜条件是:培养时间72h,培养温度33℃C,培养基初始pH值4,NMC产率达1.2g/L。根据发酵培养液中NMC与杂质的物理和化学性能的差异,采用物理分离和化学分离相结合的方法,研究了分离纯化工艺,制备出纯净NMC。 凝胶渗透色谱仪(GFC)测定其分子量及其分布表明,培养液初始pH值从3.5到5.5,木醋杆菌合成NMC的相对分子量的影响不显著,体系初始pH值对产物的分子量分布基本无影响,且相对分子质量分布指数几乎相同为1.3,相对分子质量非常均一。 TEM测试水溶液中的NMC形貌为近似球形,大小在20nm左右,表明实现了对NMC颗粒尺度的合成控制;TEM测试NMC干燥粉状颗粒形状近似球形;样品粒度D50为85.6nm,分布范围在40-500nm之间,可能是在干燥过程中颗粒之间有所团聚。 IR光谱证明了该产品为p-1,4-结合键的葡聚糖。纳米微生物纤维素与微晶纤维素具有相近的总失重比率,总失重率分别为89.6%和84.6%;失重率最大温度分别为336.93℃C和358.12℃;热解产物基本为二氧化碳和水。NMC的X—射线衍射结果与微生物纤维素凝胶所测得晶型一致;NMC比微晶纤维素有更好的结晶,在2θ角14-17度范围内晶相略有不同。 此研究还实现了控制合成特定性能的微生物纤维素。纳米微生物纤维素材料的合成跨越生物、化学和材料等多个学科领域,是继物理和化学法以后的一种新的生物法制备纳米纤维素材料。 第三,为了进一步拓展微生物纤维素在生物材料领域的应用范围,对其进行选择性氧化合成开发医用吸附材料二醛纤维素,详细研究其氧化过程及其产物性能。本研究首次采用微生物纤维素这种优良原料,氧化合成了二醛纤维素,克服了普通纤维素中因含有半纤维素或木质素等带来的氧化产物性能受影响的缺点,以制备性能优良的医用吸附材料。 氧化影响因素研究说明,酸性条件有利于醛基的生成,而温度、氧化剂浓度、时间和氧化剂用量则存在一个最佳值。适宜的氧化条件为:温度为35℃,pH值为2,时间为20h,氧化剂浓度为0.2mol/L,氧化剂用量为1:1。 IR结构表征证明,高碘酸钠非均相氧化微生物纤维素产生了醛基基团。 由微生物纤维素、微晶纤维素、二醛基纤维素的吸附性能表明,三者的最大吸水量分别为12.Og/g,6.6g/g,3.6g/g;三者对于铁离子的最大吸附量为11mg/g,8.3mg/g,6.8mg/g。醛基含量3.4mmol/g的二醛纤维素对铁离子的吸附量降为4.9mg/g;二醛基纤维素对己二胺的最大吸附量为686mg/g,对对苯二胺的吸附量最大为460mg/g。基本达到了期望的二醛纤维素材料对水和铁离子吸附低,而对氨基化合物吸附量大的性能。红外光谱测试证明了二醛基纤维素吸附己二胺的吸附为物理吸附,而对于对苯二胺的吸附既有物理吸附又有化学吸附。 二醛纤维素(DAC)的氧化度从低到0.75mmol/g,其结晶度从原料MC的66%下降到56%,醛基的引入使得糖环残基开环,降低了分子的有序结晶排列和堆积程度,从而使得结晶程度下降;其热解温度,从MC的230℃降低到180℃,而最大失重率温度从340℃下降到290℃,说明随着醛基含量的增加,二醛纤维素的更易于热解,热失重率也降低了。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 J.Andrew Hudson ,邹碧珍;极端嗜热性微生物纤维素酶的活性[J];生物技术;1992年06期
2 孙国凤;;日本用细菌纤维素制扬声器[J];生物技术通报;1988年04期
3 花莉,王志杰,陆赵情;细菌纤维素——新型纸品生物添加剂[J];西南造纸;2003年03期
4 郑小玲;林陈水;;微生物纤维素结合域的研究及在生物技术中的应用[J];纤维素科学与技术;2008年02期
5 张继颖;胡惠仁;;新型生物造纸添加剂——细菌纤维素[J];华东纸业;2009年06期
6 余晓斌,卞玉荣,全文海,刘伟;细菌纤维素高产菌的选育[J];纤维素科学与技术;1999年04期
7 ;利用丙酮、丁醇和酒精废醪培养绿色木霉产生纤维素酶的试验[J];福建师范大学学报(自然科学版);1975年01期
8 蒲海燕,陈宇前;细菌纤维素及其在食品工业中应用[J];粮食与油脂;2005年09期
9 余晓斌,卞玉荣,全文海;Acetobacter xylinum生产纤维素的最适培养基成分[J];生物技术;1999年03期
10 高伦江;董全;唐春红;;纤维素酶的研究进展及前景展望[J];江苏食品与发酵;2007年04期
11 杜煜,张安龙;生物技术在制浆造纸工业的应用及其进展[J];西南造纸;2001年06期
12 刘勤华;马汉军;潘润淑;;细菌纤维素及其在食品中的应用[J];农技服务;2008年05期
13 王西俜,罗永平;应用木霉P_2菌株提高木薯液态白酒出酒率的研究[J];食品科学;1985年12期
14 张雯;齐香君;;细菌纤维素生产菌株菌体细胞收集方法的研究[J];食品工业科技;2006年09期
15 肖红,易美华;椰子的开发利用[J];海南大学学报(自然科学版);2003年02期
16 吕桂芬;石油污染土壤微生物对纤维素分解能力的研究[J];内蒙古师范大学学报(教育科学版);1998年04期
17 马承铸;生物有机纳米材料——细菌纤维素[J];精细与专用化学品;2001年18期
18 苏建宇,乔长晟;木醋杆菌静态培养生产细菌纤维素的研究[J];宁夏农学院学报;2001年01期
19 卞玉荣,余晓斌,全文海;细菌纤维素的性质与结构研究[J];纤维素科学与技术;2001年01期
20 马霞,王瑞明,关凤梅,贾士儒;非碳水化合物对木醋杆菌合成细菌纤维素影响规律的初探[J];中国酿造;2003年04期
中国重要会议论文全文数据库 前10条
1 王俐;;鸡的肠道微生物与其营养的关系[A];中国畜牧兽医学会动物营养学分会第六届全国会员代表大会暨第八届学术研讨会论文集(下)[C];2000年
2 王炜;宋博;史续典;杨光;;新型纳米碳材料的先进生物制造[A];2007年全国高分子学术论文报告会论文摘要集(上册)[C];2007年
3 冯玉红;李嘉诚;林强;张晓利;吴周新;庞素娟;;自动电位滴定法测定二醛纤维素醛基含量[A];中国化学会第十三届有机分析与生物分析学术会议论文集[C];2005年
4 杨光;王刚;史续典;何峰;余龙江;;调控微生物的生物制造技术与应用[A];第四次全国土壤生物和生物化学学术研讨会论文集[C];2007年
5 石志军;王刚;臧姗姗;姜帆;杨光;;纤维素纤维与导电材料的有序原位纳米组装[A];2008年两岸三地高分子液晶态与超分子有序结构学术研讨会暨第十次全国高分子液晶态与超分子有序结构学术论文报告会论文集[C];2008年
6 孙臻;刘坤;余龙江;刘笔锋;杨光;;图案化纤维素的微纳生物组装[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
7 裴重华;林强;吴周新;;纳米微生物纤维素的合成[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年
8 张梦影;冯玉红;;细菌纤维素研究进展[A];2006年全国功能材料学术年会专辑[C];2006年
9 刘阳春;;美乐康菌茶宝的研制与应用[A];第三届“益生菌、益生元与健康研讨会”论文集[C];2004年
10 杨光;付丽娜;臧珊珊;周平;;基于细菌纤维素的医用功能材料[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
中国博士学位论文全文数据库 前4条
1 冯玉红;微生物纤维素及其氧化衍生物的合成与性能研究[D];昆明理工大学;2008年
2 潘锋;秸秆微生物共发酵生产单细胞蛋白研究[D];南京理工大学;2002年
3 赵琳;木醋杆菌纤维素敷料的实验研究[D];第二军医大学;2010年
4 耿家青;高分子—氧化钛纳米杂化膜的制备与初步应用[D];天津大学;2010年
中国硕士学位论文全文数据库 前10条
1 凌云;细菌纤维素产生菌的筛选、初步鉴定、培养基的优化及GDH基因缺失体的研究[D];广西大学;2006年
2 邱开颜;低成本培养基碳源的制备及高产纤维素木醋杆菌的诱变选育[D];东华大学;2007年
3 张永凤;食醋淋浇发酵生产中菌膜产生机理和防治的研究[D];贵州大学;2008年
4 李静;细菌纤维素的制备及结构与性能研究[D];青岛大学;2008年
5 周浩;微生物合成细菌纤维素并运用于制备复合材料的初步研究[D];南京理工大学;2010年
6 杜晶晶;氨基葡萄糖对细菌纤维素血液相容性的影响[D];海南大学;2010年
7 朱清梅;含N-乙酰葡萄糖胺的细菌纤维素共聚物的生物合成[D];海南大学;2010年
8 崔思颖;产细菌纤维素深层发酵菌种选育及工艺优化[D];华南理工大学;2010年
9 邹敏;细菌纤维素的制备及其应用于酶的固定化研究[D];东华大学;2010年
10 王刚;细菌纤维素纳米纤维的可控生物制造[D];华中科技大学;2009年
中国重要报纸全文数据库 前2条
1 中国生物工程开发中心 林琳;21世纪新的经济增长点: 转基因植物产业[N];科技日报;2002年
2 ;一项专利带动一个行业[N];经济日报;2007年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978