收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

数据挖掘中聚类若干问题研究

赵恒  
【摘要】:数据挖掘是为了满足人们对数据中所蕴涵的信息和知识的充分理解和有效应用而发展起来的一门新兴技术。数据库、人工智能和数理统计是知识发现和数据挖掘的三个强大的技术支柱。发展自统计学的聚类分析作为数据挖掘的一项主要功能和任务,成为数据挖掘中的一个重要的研究领域,至今已提出了大量的理论和方法,取得了丰硕的研究成果。尽管如此,聚类中还存在许多问题,尤其随着数据挖掘技术的广泛应用,数据挖掘所面对的数据对象日趋复杂,聚类研究也面临更多新的内容和挑战。这就要求对现有聚类技术进行改进,同时不断提出新的聚类理论和方法以适应新的应用。 本文对聚类有效性问题,迭代优化聚类的初始化问题,分类属性数据聚类算法及高维数据聚类方法进行了较为深入的研究,主要内容如下: 第一章简单介绍了数据挖掘技术和数据挖掘中的聚类分析的特点,详细论述了聚类有效性问题、迭代优化聚类的初始化、分类属性数据聚类方法以及高维数据聚类的研究现状,最后介绍了本文的主要研究工作成果及内容安排。 第二章介绍了数据挖掘中的聚类分析,包括聚类分析的数据结构和数据类型,聚类准则的确定,聚类算法的分类,并详细论述了数据挖掘中用到的主要聚类算法,最后对聚类结果的评价方法进行了简要介绍。 第三章主要研究聚类有效性函数。首先介绍了模糊聚类的划分系数与划分熵,研究了基于几何结构的聚类有效性函数,从聚类的“紧致度”和“分离度”角度出发,提出了一种新的基于几何结构的加性聚类有效性函数;研究了改进的HubertГ统计量,将其与聚类分离度相结合,提出了一种基于HubertГ统计量和分离度的聚类有效性函数。此外,研究了聚类算法的实验结果的评价,指出了现有聚类结果评价方法的不足,阐明了聚类精确度是反映聚类效率的观点,用FowlkesMallows划分相似测度作为聚类精确度,来评价后续章节中聚类算法的实验结果。 第四章研究了现有的迭代优化聚类的初始化方法:即采样法,距离优化法以及密度估计法,分析了它们的优缺点,提出一种新的基于距离的初始化方法,它不需要设定门限,不受数据集的顺序影响,而且对孤立点和噪声有较强的抑制,适用于较大规模数据的聚类初始化;分析了对初值不敏感的k-harmonicmeans算法,提出了模糊k-harmonic means算法,并导出了该算法在中心迭代统一框架下的描述。 第五章研究了k-modes、k-prototypes和fuzzy k-modes聚类算法,通过仿真讨论了k-prototypes算法的性能;在新的差异度函数的基础上提出了一种新的


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 张新光,王建华;数据仓库信息处理技术研究[J];齐齐哈尔大学学报;2000年03期
2 丁纪云,蔡春娥;利用构造数据集评定数据挖掘过程的方法[J];湖南广播电视大学学报;2001年02期
3 任承业,罗伟其;校园信息系统中CRM与数据挖掘的结合和应用[J];计算机工程与应用;2003年13期
4 王艳;数据挖掘在数字图书馆中的应用[J];情报科学;2003年02期
5 邵红全,赵茜;用SQL Server2000实现数据挖掘的技术与策略[J];电脑开发与应用;2003年04期
6 耿庆鹏,卢子芳;利用数据挖掘技术实现对电信行业用户欺诈行为的预测[J];电信快报;2003年10期
7 蒋良孝,蔡之华;基于数据仓库的数据挖掘研究[J];计算技术与自动化;2003年03期
8 叶静,蔡之华;遥感图像中的数据挖掘应用概述[J];计算机与现代化;2003年10期
9 黄解军,万幼川,潘和平;银行客户关系管理与数据挖掘的应用[J];计算机工程与设计;2003年07期
10 崔强,朱卫东;基于数据挖掘的铁路机务段成本控制系统[J];铁路计算机应用;2003年01期
11 杨思春;基于数据仓库的数据挖掘技术分析研究[J];微机发展;2003年09期
12 汤效琴,戴汝源;数据挖掘中聚类分析的技术方法[J];微计算机信息;2003年01期
13 李月芳,孙俊;数据挖掘及其在电网故障诊断中的应用[J];农机化研究;2003年04期
14 陈勍;数据挖掘技术及其应用[J];医学信息;2004年04期
15 ;中国科学院数据挖掘与知识管理学术研讨会在京举行[J];管理评论;2004年07期
16 曾贞;数据挖掘在电子商务中的应用[J];甘肃农业;2004年07期
17 陈钟;基于DSO的数据挖掘应用[J];广西师范学院学报(自然科学版);2004年S1期
18 柯文德;一种基于数据挖掘的分布式入侵检测模型[J];计算机测量与控制;2004年08期
19 徐玲;基于案件综合信息分析挖掘的研究[J];广东公安科技;2004年01期
20 赵明清;蒋昌俊;陶树平;;基于等价相异度矩阵的聚类[J];计算机科学;2004年07期
中国重要会议论文全文数据库 前10条
1 郭学军;陈晓云;;粗集方法在数据挖掘中的应用[A];第十六届全国数据库学术会议论文集[C];1999年
2 徐慧;;基于Web的文献数据挖掘[A];第十七届全国数据库学术会议论文集(技术报告篇)[C];2000年
3 孙迎;;医院信息的数据挖掘与方法研究[A];中华医学会第十次全国医学信息学术会议论文汇编[C];2004年
4 薛晓东;李海玲;;数据挖掘的客户关系管理应用[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(下册)[C];2004年
5 郭建文;黄燕;印鉴;杨小波;梁兆辉;;建立中风病“阴阳类证”辨证规范的数据挖掘研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
6 薛鲁华;张楠;;聚类分析在Web数据挖掘中的应用[A];北京市第十三次统计科学讨论会论文选编[C];2006年
7 朱扬勇;黄超;;基于多维模型的交互式数据挖掘框架[A];第二十届全国数据库学术会议论文集(技术报告篇)[C];2003年
8 陈涛;胡学钢;陈秀美;;基于数据挖掘的教学质量评价体系分析[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
9 王星;谢邦昌;戴稳胜;;数据挖掘在保险业中的应用[A];北京市第十二次统计科学讨论会论文选编[C];2003年
10 郭建文;黄燕;印鉴;杨小波;梁兆辉;;建立中风病阴阳类证辨证规范的数据挖掘研究[A];2010中国医师协会中西医结合医师大会摘要集[C];2010年
中国博士学位论文全文数据库 前10条
1 孙丽;工艺知识管理及其若干关键技术研究[D];大连交通大学;2005年
2 胡志坤;复杂有色金属熔炼过程操作模式智能优化方法研究[D];中南大学;2005年
3 刘革平;基于数据挖掘的远程学习评价研究[D];西南师范大学;2005年
4 刘寨华;基于临床数据分析的病毒性心肌炎证候演变规律研究[D];黑龙江中医药大学;2006年
5 王川;基因芯片数据管理及数据挖掘[D];中国科学院研究生院(上海生命科学研究院);2004年
6 王涛;挖掘序列模式和结构化模式的精简集[D];华中科技大学;2006年
7 郭斯羽;动态数据中的数据挖掘研究[D];浙江大学;2002年
8 李旭升;贝叶斯网络分类模型研究及其在信用评估中的应用[D];西南交通大学;2007年
9 刘东升;面向连锁零售企业的客户关系管理模型(R-CRM)研究[D];浙江工商大学;2008年
10 余红;网络时政论坛舆论领袖研究[D];华中科技大学;2007年
中国硕士学位论文全文数据库 前10条
1 廖赛恩;养生方数据挖掘分析系统的研制[D];湖南中医药大学;2010年
2 李坤然;数据挖掘在股市趋势预测的应用研究[D];中南林业科技大学;2008年
3 郑宏;数据挖掘可视化技术的研究与实现[D];西安电子科技大学;2010年
4 杜金刚;数据挖掘在电信客户关系管理及数据业务营销中的应用[D];北京邮电大学;2010年
5 徐路;基于决策树的数据挖掘算法的研究及其在实际中的应用[D];电子科技大学;2009年
6 梁小鸥;数据挖掘在高职教学管理中的应用[D];华南理工大学;2011年
7 王浩;数据挖掘在上海市职业能力考试院招录考试优化管理项目中的运用研究[D];华东理工大学;2012年
8 黎卫英;数据挖掘在中职幼教课程改革中的应用[D];福建师范大学;2009年
9 张煜辉;数据挖掘和SPC在生产过程质量控制中应用研究[D];上海交通大学;2009年
10 刘华敏;数据挖掘在高职院校学生成绩分析中的应用[D];安徽大学;2011年
中国重要报纸全文数据库 前10条
1 李开宇 黄建军 田长春;把“数据挖掘”作用发挥出来[N];中国国防报;2009年
2 华莱士;“数据挖掘”让银行赢利更多[N];国际金融报;2003年
3 记者 晏燕;数据挖掘让决策者告别“拍脑袋”[N];科技日报;2006年
4 □中国电信股份有限公司北京研究院 张舒博 □北京邮电大学计算机科学与技术学院 牛琨;走出数据挖掘的误区[N];人民邮电;2006年
5 张立明;数据挖掘之道[N];网络世界;2003年
6 中圣信息技术有限公司 李辉;数据挖掘在CRM中的作用[N];中国计算机报;2001年
7 田红生;数据挖掘在CRM中的应用[N];中国经济时报;2002年
8 王广宇;数据挖掘 加速银行CRM一体化[N];中国计算机报;2004年
9 周蓉蓉;数据挖掘需要点想像力[N];计算机世界;2004年
10 张舒博;数据挖掘 提升品牌的好帮手[N];首都建设报;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978