收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

原子—腔—场系统中量子纠缠信息交换、传递与保持的机理研究

王菊霞  
【摘要】: 量子纠缠信息的交换、传递与保持问题,是当前量子光学与量子信息学领域的前沿重大课题之一,其成果在量子通信与量子光通信等高科技领域具有广阔的应用前景和重大的应用价值。本文利用全量子理论,对多种“原子-腔-场”相互作用系统中量子纠缠信息的交换、传递与保持问题进行了系统研究,由此获得了一系列既不同于现有报道又具有重要意义的新的结果和结论。本文的主要的研究结果如下: 1.采用数值计算的方法,研究了两个偶极-偶极相互作用的耦合双能级原子分别与单模奇相干态光场、单模偶相干态光场以及两态叠加单模Schr?dinger-cat态光场相互作用系统中原子与腔场之间的量子纠缠度的时间演化特征。结果表明,场-原子系统量子纠缠度的时间演化特性不仅与光场的初始平均光子数、场-原子之间的耦合强度、原子-原子之间的耦合强度以及频率失谐量等密切相关,而且还与原子的初始状态有关,并完全由这些因素共同决定。一般而言,纠缠度的时间演化普遍呈现出振荡性;并且在初始强场的条件下,场-原子之间的纠缠与退纠缠现象周期性的交替出现,且存在量子干涉现象;随着场-原子之间耦合强度的增大,量子纠缠不规则振荡的周期逐渐减小;当原子-原子之间耦合强度取某些定值时,量子纠缠度的时间演化会呈现出周期性的崩坍-回复现象,当原子-原子之间偶极-偶极相互作用较弱时,量子场熵演化规律与单光子J—C模型的情形相似,当偶极相互作用足够强时又与双光子J—C模型的特征相似。通过控制影响因素,尽可能使原子与光场较长时间处于较大程度的纠缠态,将有利于量子纠缠信息的传递。 2.建立了由多个相互独立的“原子-腔-场”相互作用系统的物理模型。利用全量子理论,分别研究了M个单原子分别与M个单(多)模光场依赖于强度耦合的单(多)光子相互作用过程、M个耦合双能级原子分别与M个单(多)模光场的单(多)光子相互作用过程,给出了不同情况下系统态矢的一般演化式,找到了利用原子-腔-场之间的相互作用过程来实现量子纠缠信息交换与传递的条件。结果发现:只要控制原子-腔场之间相互作用时间并使原子以特定速度穿过腔场,对于不同的模型有时还需要对出腔原子进行测量,并通过处于基态的原子与存储量子纠缠信息的腔场两者之间的相互作用最终使原子获得了量子纠缠信息。相反,纠缠原子中的量子纠缠信息也可传递给处于真空态的腔场。与此同时,作为“飞行的量子比特”的基态原子可将量子纠缠信息从一个腔场传递到另一个腔场。不仅如此,通过控制原子与腔场之间相互作用时间,也可使腔场或者原子初始量子纠缠信息被完全保持或部分保持。在不同的系统中,影响实现量子纠缠信息交换、传递与保持条件的因素各不相同。例如,通过对频率失谐量的控制,可使量子纠缠信息被完全交换、完全传递或完全保持,但原子之间的偶极相互作用会导致量子纠缠信息被非完全传递和非完全保持。由此可见:当处于基态的原子以特定速度通过处于量子纠缠态的腔场时,原子能够将光场的量子纠缠信息据为已有;反之,当纠缠原子以特定速度通过真空态腔场时,原子又能将自己携带的量子纠缠信息释放于腔场之中,这样便实现了原子-腔-场系统量子纠缠信息的交换与传递。研究还表明:利用原子能够捡起和释放量子纠缠信息的特点,可进一步实现腔-腔之间的异地量子纠缠信息的传递。 3.提出了由相干腔场与相干原子构成的综合物理模型,研究了相干原子束与单(多)模相干光场的单(多)光子的共振(非共振)相互作用过程,利用演化因子给出了相干原子束与相干腔场相互作用系统的演化规律。结果表明:腔场与原子相互作用过程中光场纠缠态与原子纠缠态可周期性地相互转换,这样便实现了量子纠缠信息的交换与传递。且其转换周期分别与原子-腔场之间相互作用的耦合强度g、相互作用时间t、原子(或光子湮灭)算符的复系数Aξ,k( Aη,k)、各模光场参与相互作用(或初始)的光子数N j, k( n j, k)以及光场所含的纵模数q等密切相关并完全由这些因素决定。研究还发现:在普遍情况下,量子纠缠信息交换与传递的条件分别与原子的跃迁频率ωa,k及其相对相位ξ、光场的频率ωf,k及其相对相位η、场-原子之间的耦合强度g以及场-原子相互作用时间t等均有关;但当原子与光场发生共振相互作用时,其条件仅与g、t有关。由此揭示出相干腔场与相干原子束相互作用过程中量子纠缠信息交换与传递的一般特征。另外,在适当条件下,原子纠缠态或光场纠缠态可以保持初态不变。在一定条件下,上述这些普遍性结果便过渡到了非相干原子与光场相互作用的特殊情形。 4.在考虑非线性效应的情况下,精确求解了由多个原子与多个腔场构成的联合系统态矢量随时间演化的一般表式,利用全量子理论并通过数值计算方法,详细研究了Kerr效应、Stark效应、以及虚光场效应对量子纠缠信息在原子与腔场之间周期性可逆交换与传递过程的影响。结果表明:①.Kerr介质对初始腔场为真空态或最低Fock态组成的纠缠态等一些特殊情形不产生任何影响,而对一般Fock态n k( n k≠0)都会改变其量子纠缠信息转换的相位和周期,且Kerr效应越强转换周期就越短,反之亦然,因此,通过选取不同Kerr介质并改变Kerr效应的强弱程度,可以控制量子纠缠信息交换与传递的快慢程度,还有,当考虑Kerr效应时,相位的改变也与腔场中光子数n k(k=1,2,3,…,M)的多少有关;②.Stark效应和初始场强对此过程也有着显著的影响:光场的量子纠缠程度会随着初始场强的增强而增大,在强场条件下,光场量子纠缠度可呈现出周期性的崩塌-回复现象,并且Stark移位参量越大,光场量子纠缠度振荡越剧烈,说明Stark效应破坏了光场量子纠缠度的时间稳定性;③.旋波近似对原子纠缠态与光场纠缠态两者之间的交换、传递与保持不产生任何影响;而在非旋波近似下,虚光场效应对纠缠态在腔场与原子之间相互转化的过程有着明显的影响:在光场纠缠信息传递给原子之后腔场并不能恢复到最初的真空态;伴随着纠缠态的转化和保持过程,相位有所改变并产生了多个干扰项。


知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978