麦田生态系统中麦长管蚜与赤霉病的生态调控模型构建与机理研究
【摘要】:全世界小麦(Triticum aestivum L.)的种植总面积超过21,500万公顷,在麦田生态系统中,小麦往往被不同种类的有害生物依次或同时进行为害。有害生物种类很多,麦长管蚜和赤霉病等就是其中非常重要的小麦病虫害,麦蚜的刺吸危害以及赤霉病引起的穗腐,严重地影响小麦的品质和产量,并威胁着人类的粮食安全。目前,大多数研究仅围绕其中一种虫害或一种病害展开,难以发现麦田生态系统中物种间调控模型和机制。应用这种调控模型去调节麦田系统中病虫害的发生数量和程度,以此降低危害程度、减少化学农药的使用,是满足人类日益增长粮食需求的重要途径之一。因此,本研究以小麦和不同种类病虫害组建麦田生态亚系统:挖掘并转化小麦本身具有的抗性基因以培育高产抗虫害种质资源、利用小麦的诱导抗性、寻找降低病原菌致病性的相关基因和基因敲除等方法让致病基因沉默,以此构建调控模型,分析其调控机理,以期为麦田生态系统有害生物生态调控提供理论依据。研究得出以下重要结论:1在麦田生态系统中,小麦已经进化出众多调控策略以降低麦长管蚜的危害水平。本研究证明小麦品系XN98-10-35生态调控策略为耐害性;将已获得6个小麦的表达序列标签(Expressed Sequence Tag),通过比对分析发现,其中一个候选基因的功能与小麦的光合作用密切相关,被定于小麦7D染色体上,与本课题组通过分子标记方法研究的抗性基因定位的结果一致。所以,XN98-10-35主动提高光合作用是其调节并抵御麦长管蚜危害的重要分子机制之一。2在麦田生态系统中,叶蝉种群动态高峰早于麦长管蚜种群,因此叶蝉取食后的小麦是如何调控后续麦长管蚜种群动态对构建调控模型和害虫种群数量调节具有重要意义。本研究以麦长管蚜生命表参数的变化为衡量指标,研究前期叶蝉危害的小麦如何调节麦长管蚜生长发育与繁殖以及种群动态。研究结果表明:受到叶蝉危害后的感蚜小麦品种Bobwhite和Leguan均不是适合后期麦长管蚜取食的宿主,即小麦受到叶蝉危害后,对麦长管蚜产生了诱导抗性,显著地影响其生长发育和繁殖,进而调控其种群动态。3小麦赤霉病的流行主要由禾谷镰刀菌(Fusarium graminearum Schwabe)引起,而且禾谷镰刀菌可以摄取环境中合成生长素的相关底物来生物合成生长素,以提高其致病性。然而鲜有禾谷镰刀菌体内合成生长素途径的相关报道,因此研究麦田生态系统中禾谷镰刀菌采用哪些途径合成生长素,是该病害生态调控的关键点之一。本研究结果表明:添加至培养液中可能的生长素合成前体L-色氨酸、吲哚-3-丙酮酸、吲哚-3-乙胺(TAM)和吲哚-3-乙腈(IAN)等,除了L-色氨酸的代谢产物为生长素的类似物色醇外,其他的三种均可以被用来合成生长素,证明禾谷镰刀菌可利用多个底物经由多条途径合成生长素,为其生态调控提供新的方向。4禾谷镰刀菌在侵染过程中,可以分泌大量的呕吐毒素(15-ADON)毒污小麦籽粒,有效降低其含量在粮食的安全生产上具有非常重要的作用。本研究探索添加不同浓度的生长素以及生长素合成前体对禾谷镰刀菌15-ADON合成能力的影响,以期寻找可以抑制15-ADON合成的化合物与适用的浓度。结果显示:仅1 mM IAN对禾谷镰刀菌的野生菌株合成生物毒素15-ADON带来严重的影响。为深入探究1 mM IAN调控禾谷镰刀菌产生毒素机理研究发现:高浓度IAN可以有效抑制菌丝的伸长速度和数量。因此,添加1 m M IAN是麦田生态系统降低禾谷镰刀菌产生毒素的调控策略之一。5探究生长素合成过程是生态调控禾谷镰刀菌侵染过程的关键,因此,本研究根据前人Microarray实验的结果,选择12个可能参与合成生长素或色醇的候选基因,利用USER Friendly Clone和农杆菌介导转染的方法,对其进行替换突变。最终成功获得9个候选基因的突变体。添加相应底物之后,发现有4个候选基因的突变株合成色醇或生长素的能力被抑制:即FGSG_01285、FGSG_05295、FGSG_01572或FGSG_09834参与了生物合成合成色醇或生长素的途径。与此同时,这些突变株15-ADON分泌的能力也受到了极大的抑制,显示出利用沉默基因技术也是麦田生态系统防止镰刀菌产生毒物的调控策略。然而,还有3个候选基因的突变株却极大的促进15-ADON的合成,表明这些基因可能是调控禾谷镰刀菌产生毒物的关键基因。6为了进一步明确L-色氨酸可以促进15-ADON分泌的机理,分析前人所得禾谷镰刀菌添加L-TRP之后全局基因表达的研究结果,发现添加至培养液的L-色氨酸,仅有少量参与生物合成色醇,而大部分的L-色氨酸却被降解为能源和碳源,由此添加L-色氨酸并不能作为生态调控禾谷镰刀菌的手段。综上所述,选择种植优质、高产、耐害性小麦品种,配合喷施较高浓度生长素或者IAN是麦田生态系统中调控麦长管蚜和赤霉病的有效途径和方法。
|
|
|
|
1 |
蔡良华,卞觉时;海门市发现麦长管蚜为害水稻[J];植保技术与推广;2003年08期 |
2 |
马晓光;沈佐锐;;麦长管蚜在北京地区发生危害风险模拟研究[J];植物检疫;2007年04期 |
3 |
谢佳燕;林佳;邵艳玲;;不同剂量吡虫啉处理对麦长管蚜酯酶活性的影响[J];江苏农业科学;2012年04期 |
4 |
翟永键;麦长管蚜发生规律的初步研究[J];昆虫知识;1965年05期 |
5 |
王随保;;山西省麦长管蚜发生区划[J];山西农业科学;1983年09期 |
6 |
罗瑞梧,杨崇良,李长松;麦长管蚜种群数量变动因素和预测的研究[J];山东农业科学;1985年03期 |
7 |
罗瑞梧;杨崇良;尚佑芬;李长松;;麦长管蚜虫源问题研究[J];植物保护学报;1988年03期 |
8 |
李鹄鸣;麦长管蚜实验群种的研究[J];吉首大学学报(自然科学版);1990年01期 |
9 |
荣丽君,迪拉那·艾山;新疆麦长管蚜数量消长因子分析[J];新疆农业科学;1992年04期 |
10 |
李定旭,刘绍友;麦田食蚜天敌对麦长管蚜控制效应的研究[J];植物保护;1992年01期 |
11 |
汪世泽,郝树广;温度对麦长管蚜的影响[J];生态学杂志;1993年03期 |
12 |
高有才,张焕林,崔娜珍;麦长管蚜在小麦植株上的垂直分布[J];昆虫知识;1996年03期 |
13 |
彭丽年,张小平,叶建生,左燕;四川省麦长管蚜(Macrosiphum avenae F.)的抗药性研究[J];农药学学报;2000年03期 |
14 |
陶红卫,王江平,王萍,康发柱,孙积贵,王同仁,徐晶虹;麦长管蚜种群田间分布类型测定[J];新疆农业科学;2000年04期 |
15 |
苗良,岳训,张新谊,徐洪富;基于云模型的定性预报模型及其在麦长管蚜预报中的应用[J];中国农业科学;2002年06期 |
16 |
马晓光,沈佐锐,胡伯海;麦长管蚜风险因子随机模拟研究[J];中国农业科学;2003年08期 |
17 |
段灿星,王晓鸣,朱振东,张正伟,金达生;我国小麦抗麦长管蚜(Sitobion avenae)研究概况[J];植物遗传资源学报;2003年02期 |
18 |
刘保川;陈巨莲;倪汉祥;孙京瑞;武予清;;小麦中黄酮类化合物对麦长管蚜生长发育的影响[J];植物保护学报;2003年01期 |
19 |
蔡凤环,赵惠燕;麦长管蚜自然群体的遗传变异研究[J];西北农林科技大学学报(自然科学版);2004年02期 |
20 |
白莉,尹青云,李锐,王孝威,郑王义,任东植,曲运琴,李希平;麦长管蚜种群时空动态的初步研究[J];麦类作物学报;2005年01期 |
|