收藏本站
收藏 | 论文排版

苜蓿丫纹夜蛾核多角体病毒GP64蛋白的结构与功能关系研究

于乾龙  
【摘要】:杆状病毒是一类感染昆虫的双链大分子DNA病毒,通常产生出芽型病毒(budded virions,BV)和包涵型病毒(occlusion-derived virions,ODV)两类形态不同的病毒粒子。苜蓿丫纹夜蛾核多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)BV的主要囊膜蛋白GP64属于第三类病毒膜融合蛋白家族,该家族代表性成员还包括水泡性口炎病毒(vesicular stomatitis virus,VSV)G蛋白和单纯疱疹病毒(herpes simplex virus type 1,HSV-1)gB等。目前,已解析的AcMNPV GP64在低pH条件下的三级结构包含五个结构域(domain I-V,简称DI-DV),但其中性pH条件下的三级结构以及低pH诱导的构象变化分子机制尚不清楚。本文针对AcMNPV GP64的DI与DV之间可能的相互作用以及晶体结构仍未被完全解析的DIV开展了结构与功能关系研究,取得的主要结果如下:一、DI与DV的结构与功能关系结构分析表明,GP64 DV与DI中邻近融合环2(fusion loop 2)的两个区域存在多个可能的相互作用位点。氨基酸序列比对分析显示,这些相互作用位点及其邻近的氨基酸残基比较保守。采用丙氨酸替换的方法对DI和DV中保守性较高或参与相互作用的24个氨基酸进行单点或双点突变。结果分析发现,DI与DV中氨基酸之间形成的分子内相互作用不是GP64表达、多聚体形成、细胞膜定位及膜融合功能所必需,但是参与相互作用的单个氨基酸对GP64膜融合功能却具有重要意义,其中DV区域内的4个氨基酸残基(G438、W439、T452和T456)对膜融合的起始及后续融合孔的形成或扩大具有重要作用。进一步研究发现,G438与W439可能参与维持GP64融合前构象的形成或稳定。二、DIV的结构与功能关系结构分析表明,DIV由两个平行的loop(loop 1-2)组成,其中loop2内的第394~398位氨基酸残基在已有的三级结构中缺失。分子内位点相互作用分析显示,在DIV内可能存在12个氨基酸之间的相互作用,主要分布在三个区域:1)顶部区域的N384-Y388;2)中部区域,由7个氨基酸形成包含位于loop1内的N381-N385、N381-K389、N385-K389和位于loop2内的D398-S400、D398-Q401以及连接loop1与loop2的N381-Q401、N381-I403、N385-W393、K389-W393的9个相互作用;3)底部区域,包括连接loop1与loop2的T379-F405以及位于loop2内的D404-S406。氨基酸序列分析表明,这些相互作用位点及其邻近氨基酸在GP64蛋白家族中高度保守。采用丙氨酸替换对DIV中保守的氨基酸及其形成的相互作用进行突变,发现所有位点的突变不影响GP64的表达及三聚体形成,但突变效应主要表现为:1.在转染质粒表达突变体的条件下,D404A、N407A不影响GP64在细胞表面的定位,却显著抑制融合孔的扩大;而另外5个保守位点(Y388、E390、G391、R392、W393)的氨基酸突变显著降低了GP64在细胞膜的定位并完全抑制膜融合起始;在重组bacmid表达各个突变体的条件下,E390A与G391A诱导形成较小的细胞融合嵌合体并抑制病毒入侵但不抑制病毒出芽释放。2.在双点突变中,T379/F405A、N385/K389A、D398/S400A、D398/Q401A不影响GP64的功能,而N381/Q401A、N381/I403A、D404/S406A抑制融合孔的扩大,N381/N385A、N381/K389A、N384/Y388A、N385/W393A、K389/W393A则抑制膜融合起始。此外,在重组bacmid表达突变体条件下,N381/K389A抑制病毒入侵但不抑制病毒出芽释放。3.特性类似的氨基酸取代突变体(Y388F、Y388W、E390D、R392H、R392K、W393F、W393Y)中,只有Y388F、E390D、W393Y诱导细胞融合,而其余4个突变体在细胞表面的定位显著下降。结构分析显示,在上述突变中,Y388A或N384/Y388A突变消除了N384-Y388的相互作用;而W393控制DIV的构象,丙氨酸替换W393导致DIV构象显著变化,突出表现为loop1内的S386、I387与loop2内的N396邻近并形成相互作用促使loop2顶部区域向蛋白中心偏移大约2.5?;另外,N381/K389A消除了N381-K389、N385-K389、N381-Q401、N381-I403的相互作用,而N381/I403A则消除了N381-Q401、N381-I403的相互作用,揭示破坏loop1与loop2之间的互作影响GP64的转运及其膜融合功能。最后,N381-N385、N385-K389与上述相互作用之间在维持DIV构象中具有冗余功能,消除这些相互作用后,DIV构象由于局部氨基酸的邻近形成新的相互作用(如A381-V394、A389-R392)协助其余的相互作用仍维持稳定。总之,我们的研究结果表明,DV结构域内的G438与W439以及DIV结构域内的N381、Y388、E390、G391、R392、W393及其与邻近氨酸酸形成的分子内相互作用在维持GP64中性pH条件下的三级结构及诱导膜融合的起始和融合孔扩大过程中具有关键调控作用。根据已获得的部分第三类病毒膜融合蛋白的融合前及融合后结构,我们提出了GP64可能的构象变化机制。


知网文化
【相似文献】
中国期刊全文数据库 前19条
1 王霞;刘晓丹;于晓明;;凤尾鸡冠花耐盐突变体的RAPD鉴定[J];吉林农业;2016年23期
2 王振业;;水稻类病斑突变体研究进展[J];生物技术世界;2015年06期
3 全瑞兰;王青林;马汉云;扶定;霍二伟;沈光辉;郭桂英;;水稻白化转绿突变体研究进展[J];安徽农学通报;2015年12期
4 顾玉成,吴金平;利用离体培养技术筛选抗病突变体的研究进展[J];湖北农业科学;2004年02期
5 舒翠玲,郭燕翔,胡美茹,栾尧,沈倍奋;人CD28分子突变体的构建和表达[J];细胞与分子免疫学杂志;1999年02期
6 程渊,沈子威,赵南明,孙彤,王敖金,胡坤生;蜂毒突变体对紫膜质子泵功能的影响[J];生物物理学报;1997年01期
7 刘士辉,黄培堂,黄翠芬;组织型纤溶酶原激活剂突变体的构建、表达及特性分析[J];中国科学(B辑 化学 生命科学 地学);1995年04期
8 周松茂,李代玺,徐光华;水稻辐射突变体遗传变异的初步研究[J];遗传;1985年02期
9 丁小令;矮杆、优质的水稻突变体[J];贵州农业科学;1986年01期
10 K.S.McKenzie;金卫;;一个水稻长粒型品种的半矮秆突变体[J];核农学通报;1987年02期
11 ;国外文摘[J];核农学通报;1987年04期
12 李玉堂;;辐射诱变少核红毛橙的初步研究[J];四川农业大学学报;1987年04期
13 林振武;;硝酸还原酶的研究动态[J];植物生理学通讯;1987年06期
14 缪树华;D.R.Duncan;J.M.Widholm;;抗赖氨酸加苏氨酸玉米突变体的选择[J];Journal of Integrative Plant Biology;1987年06期
15 刘惠卿;;花卉动向 国外庭园[J];植物杂志;1987年01期
16 邱庆树;鲁蓉蓉;张代珍;禹山林;付广照;;花生突变体主要器官的解剖学观察[J];核农学报;1987年02期
17 任作瑛;周志康;;桑接穗γ射线突变体的激光再处理试验[J];核农学报;1987年01期
18 伊虎英;;春谷辐射引变效应的研究[J];水土保持研究;1987年02期
19 邬信康;利用致病毒素选择抗病突变体[J];吉林农业大学学报;1988年01期
中国重要会议论文全文数据库 前10条
1 易小平;陈芳远;卢升安;周开达;;空间环境诱发水稻突变体特异亲和性研究[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
2 杨晓璐;谢庆军;冯健;郑华坤;董国军;钱前;左建儒;;水稻细胞分裂素反应异常突变体的筛选和基因克隆[A];2011全国植物生物学研讨会论文集[C];2011年
3 胡天岑;王奎锋;李连维;陈静;蒋华良;沈旭;;SARS冠状病毒3CL蛋白酶突变体的结构对其聚合-活性关系的提示[A];中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集[C];2008年
4 郝建平;郭美丽;裴雁曦;;拟南芥抗盐突变体的RAPD分析[A];2004年北方七省市植物学年会论文集[C];2004年
5 林植芳;彭长连;徐信兰;林桂珠;张景六;;两个新的水稻缺叶绿素b突变体光合作用的热稳定性[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
6 何俊瑜;朱诚;蒋德安;陈静;孙宗修;;水稻突变体对镉的反应及其对镉的积累、分配特性[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
7 罗晨薇;程家森;谢甲涛;陈桃;姜道宏;付艳萍;;盾壳霉产孢缺陷突变体的分析[A];中国植物病理学会2016年学术年会论文集[C];2016年
8 贾娇;邢继红;董金皋;;拟南芥抗核盘菌突变体的筛选[A];中国植物病理学会2010年学术年会论文集[C];2010年
9 李国柱;申慧芳;;辐射诱变选育苦荞高黄酮突变体的研究[A];第六届核农学青年科技工作者学术交流会暨中国核学会2011年学术年会核农学分会论文集[C];2011年
10 李文强;陈坤明;;一个水稻卷叶突变体的表型分析与基因定位[A];从植物科学到农业发展——2012全国植物生物学大会论文集[C];2012年
中国博士学位论文全文数据库 前10条
1 于乾龙;苜蓿丫纹夜蛾核多角体病毒GP64蛋白的结构与功能关系研究[D];西北农林科技大学;2019年
2 张若西;BIG基因参与调控茉莉酸信号及其介导的植物发育和抗性反应[D];武汉大学;2017年
3 陈征;水稻斑点叶突变体spl24基因克隆与功能验证[D];华中农业大学;2019年
4 魏超;甘蓝型油菜hau CMS恢复基因Rfh的定位以及矮秆突变体bnaC.dwf的转录组分析[D];华中农业大学;2018年
5 赵方毓;增强人生长激素生物学效能的可行性研究[D];武汉大学;2016年
6 朱晓鹏;α-芋螺毒素LvIA突变体的合成及其功能研究[D];海南大学;2016年
7 王日欣;家蚕体形突变体樽蚕(tub)的定位克隆及分子机制探析[D];西南大学;2018年
8 王闵霞;水稻分蘖调控基因OsIAA16的功能研究和d14突变体遗传修饰因子的创制[D];中国农业科学院;2016年
9 张婷;LATERAL FLORET 1调控水稻“三花小穗”发育的分子机制研究[D];西南大学;2018年
10 李然红;白桦早衰突变体的鉴定与研究[D];东北林业大学;2018年
中国硕士学位论文全文数据库 前10条
1 任蒙莲;水稻OsLPRs突变体构建与根系低磷性状研究[D];扬州大学;2019年
2 闵天奇;鸡、鸭、鹅和猪黑素皮质素受体5和突变体的真核表达及药理学特性初探[D];扬州大学;2019年
3 周亭亭;水稻类病斑lml突变体的遗传分析和精细定位[D];浙江师范大学;2019年
4 于璐璐;精神分裂症易感基因DGCR2突变体P429R功能研究[D];南昌大学;2019年
5 孙郭艳;水泡性口炎病毒及其基质蛋白M突变体对猪树突细胞激活作用的研究[D];上海交通大学;2018年
6 周杨洪;氮、蔗糖、一氧化氮对植物开花调控的分子机制研究[D];四川农业大学;2018年
7 陈渝飞;水稻早衰突变体els-d1的鉴定与基因克隆[D];四川农业大学;2018年
8 闫莹;apoA-I半胱氨酸突变体与apoA-V协同抗动脉粥样硬化作用的体外研究[D];青岛大学;2019年
9 张宝帅;水稻少分蘖突变体ltn2-1的表型分析及分子机制初步研究[D];沈阳农业大学;2019年
10 秦淑贞;以胱抑素及其突变体为例研究毕赤酵母表达外源蛋白的影响[D];辽宁大学;2019年
中国重要报纸全文数据库 前5条
1 张雯雯;我科学家从玉米中提取出抗艾蛋白酶突变体[N];科学时报;2010年
2 本报记者 刘洋;寻找“美丽的偶然”[N];东方烟草报;2014年
3 记者 李天舒;玉米中可提取抗艾物质[N];健康报;2010年
4 《知识分子》公众号主笔 邸利会;基因编辑作物在中国该如何监管[N];科技日报;2018年
5 科综;水稻“长生不老”可被制约[N];大众科技报;2008年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978