收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

非线性发展方程求精确解若干问题的研究

刘春平  
【摘要】:非线性发展方程是非线性偏微分方程的重要组成部分,该类方程通常用于描述随时间而演变的过程,其研究对象源自物理学、化学、信息科学、生命科学等诸多领域.对具体的非线性发展方程,如果能够得到它们的精确解,将有助于人们搞清被研究对象在非线性作用下的运动规律,准确地解释自然界中的许多非线性现象以及发现自然现象新的规律.近年来,随着计算机符号计算的发展,非线性发展方程精确求解问题成为一个活跃的研究领域,许多求精确解的直接代数方法已经呈现. 本文对近年来求非线性发展方程精确解的一些方法以及若干具体方程的精确解进行研究,全文共分六章. 第一章,简要地介绍与本文研究问题有关的背景知识和发展概况,回顾非线性发展方程的若干经典求解方法,如反散射变换方法、Painleve分析、Backlund变换法、Darboux变换法、Hirota双线性方法等. 第二章,通过改进齐次平衡法和拓展的齐次平衡法中的一些关键步骤,首先给出了修正的齐次平衡法(Ⅰ)、(Ⅱ).然后,以广义Boussinesq方程、KP方程和MKdV方程为例,说明了用修正的齐次平衡法(Ⅰ)可以导出非线性发展方程的双线性方程.进而,以(3+1)-维Jimbo-Miwa方程和(2+1)-维变系数KP方程为例,说明了用修正的齐次平衡法(Ⅱ)可以导出非线性发展方程新的自Backlund变换,从两个多维方程新的自Backlund变换出发,我们用摄动方法给出了方程的两孤了解. 第三章,对用(G′/G)-展开法、新辅助方程方法、广义Riccati方程方法得到的若干多参数行波解进行分析.首先证明(G′/G)-展开法等价于拓展的tanh函数方法,用(G′/G)-展开法不能够得到非线性发展方程新的行波解.其次证明了Sirendaoreji给出的新辅助方程的十四个解与原辅助方程的解波形波速相同仅是相位不同.最后对Xie等人用符号计算给出的广义Riccati方程的二十七个解进行研究,证明了它们和Riccati方程已知的解是等价的. 第四章,分析了求非线性发展方程精确解的两种直接代数法Sirendaoreji的辅助方程方法以及tanh-coth方法.第一节回顾了一些常用的直接代数方法以及用它们求精确解的一般步骤.第二节对Sirendaoreji的辅助方程的解按照个参数进行重新分类,这一分类给出了方程的孤波解和奇异解与三个参数值的关系.利用这一分类修正了文献中给出的MKdV方程第三类孤立波解的存在条件,也得到(2+1)-维色散长波方程组丰富的精确解.第三节证明了平衡数m≤2时,tanh-coth方法等价于双曲函数展开法. 第五章,给出一个新的试探函数,构造了三个有重要背景的非线性发展方程的精确解并分析了解之间的关系.三个方程中一个是Burgers方程、KdV方程、KdV-Burgers方程和Benney方程组合起来的方程,另外两个是广义Fisher方程和广义FitzHugh-Nagumo方程.用我们给出的新的试探函数求得的解呈现了一个有趣的现象:扭形孤波解和复值解总是一起出现.基于这一现象,我们证明了对一般的非线性发展方程,tanh θ形式的解一定和tanh2θ±isech2θ形式的解成对出现. 第六章,提出了适用于求耦合方程组精确解的广义射影Riccati方程方法.首先引入广义射影Riccati方程,利用它的解包含了几种最常见的Jacobi(?)椭圆函数的事实,说明该方法可以在统一的方法下求得用Jacobi椭圆正弦函数展开法、Jacobi(?)椭圆余弦函数展开法以及其它Jacobi椭圆函数展开法所能得到的方程的解.然后我们具体研究了耦合Klein-Gordon方程组,构造出方程的八种双周期解.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 陆启韶 ,蒋正新;一类非线性发展方程的分叉问题[J];北京航空航天大学学报;1985年02期
2 梁进;肖体俊;;一致凸Banach空间中自治非线性发展方程解的渐近性态[J];云南师范大学学报(自然科学版);1991年04期
3 江成顺,柯敬伟,王书彬;一类非线性发展方程及其相应的发展算子[J];信息工程学院学报;1994年01期
4 吕蓬,吴耀红,彭武安,张辉;一类非线性发展方程的计算稳定性[J];现代电力;2001年04期
5 陈登远,曾云波;非线性发展方程的转换算子Ⅲ[J];数学学报;1985年02期
6 张健;一类非线性发展方程解的熄灭行为[J];应用数学学报;1990年03期
7 斯仁道尔吉;一个非线性发展方程的准确解[J];内蒙古师范大学学报(自然科学汉文版);1990年03期
8 尚亚东,钮鹏程;几个非线性发展方程的精确孤立波解[J];纯粹数学与应用数学;1998年01期
9 尚亚东;几个非线性发展方程的精确孤立波解[J];甘肃科学学报;1998年04期
10 宋叔尼,傅显隆;一类非线性发展方程解的存在性[J];东北大学学报(自然科学版);1999年03期
11 盛万成,盛其荣;非线性发展偏微分方程的一些结果[J];新疆大学学报(自然科学版);1999年03期
12 叶耀军;一类二阶非线性发展方程整体解的渐近性(英文)[J];数学研究与评论;2004年01期
13 那顺布和,苏志勋,丁效华;一类非线性发展方程的AGE方法与并行计算[J];哈尔滨工业大学学报;2004年06期
14 周振中;非线性发展方程的计算稳定性对初值的依赖[J];大气科学;1983年02期
15 陈仲英;Banach空间中一类非线性发展方程的投影近似可解性及敛速估计[J];中山大学学报(自然科学版);1985年01期
16 李海峰;;高阶非线性发展方程初边值问题解的爆破[J];纺织高校基础科学学报;1990年04期
17 闫庆银;一类非线性发展方程的混合有限元方法[J];高等学校计算数学学报;1992年03期
18 王淑香;非线性发展方程的代数孤立波解[J];昭乌达蒙族师专学报;2003年05期
19 刘春平;一些非线性发展方程的显式行波解[J];数学物理学报;2004年06期
20 刘成仕;试探方程法及其在非线性发展方程中的应用[J];物理学报;2005年06期
中国重要会议论文全文数据库 前1条
1 朝鲁;;求解非线性发展方程精确解的一个新方法[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
中国博士学位论文全文数据库 前10条
1 刘春平;非线性发展方程求精确解若干问题的研究[D];扬州大学;2011年
2 王强;两类非线性发展方程的分析与计算方法研究[D];天津大学;2011年
3 刘恂;几类非线性发展方程的精确行波解的研究[D];江苏大学;2010年
4 刘绍庆;非线性发展方程精确解的研究[D];中国海洋大学;2012年
5 套格图桑;论非线性发展方程求解中辅助方程法的历史演进[D];内蒙古师范大学;2011年
6 张艳艳;非线性发展方程整体解的渐近性态及其稳态解[D];复旦大学;2010年
7 曾嵘;几类非线性发展方程解的性质的研究[D];重庆大学;2011年
8 张颖;一类非线性发展方程(组)初值问题的定性理论[D];西北大学;2012年
9 李文婷;AC=BD模式下非线性发展方程求解的若干问题研究[D];大连理工大学;2010年
10 王艳萍;非线性发展方程中的几个问题[D];郑州大学;2003年
中国硕士学位论文全文数据库 前10条
1 李军红;用标准的和推广的tanh函数展开法求解非线性发展方程[D];西北大学;2010年
2 宋朝晖;非线性发展方程的扩展守恒律和孤子解[D];大连理工大学;2010年
3 王灯山;一类非线性发展方程的非行波解的构造[D];大连理工大学;2005年
4 高华;Exp-函数法和(G'/G)-展开法在非线性发展方程求解中的应用[D];西北农林科技大学;2010年
5 蔡晓娜;几类非线性发展方程的精确解[D];浙江师范大学;2010年
6 陈良;非线性发展方程的系统求解方法及其精确解析解[D];安徽大学;2004年
7 套格图桑;两类辅助方程及其非线性发展方程(组)的精确孤立波解[D];内蒙古师范大学;2004年
8 扎其劳;两类新辅助方程及其应用[D];内蒙古师范大学;2004年
9 郭鹏云;Riccati方程与二维非线性发展方程精确解的构造[D];内蒙古师范大学;2004年
10 孟宪良;非线性发展方程的精确解[D];四川师范大学;2007年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978