计及新能源的电力现货市场交易优化研究
【摘要】:能源是社会进步和人类生存的物质基础,随着能源资源约束日益加剧,绿色低碳发展成为我国经济社会发展的重大战略和生态文明建设的重要途径,我国亟需加快建设以可再生能源为主导的清洁低碳、安全高效的能源体系,实现“30·60”双碳目标。电力工业在现代能源体系中处于核心地位,在减少温室气体排放方面发挥着重要作用,应加大力度发展以风电、太阳能为代表的绿色电力。但由于中国风能、光能富集区与需求区逆向分布,市场在优化资源配置中的作用发挥不够充分,亟需完善新能源参与的电力现货市场交易机制,构建高比例新能渗透的电力现货市场交易决策支持方法,以实现资源有效配置,促进新能源消纳。鉴于以上考虑,本文从新能源参与对电力现货市场影响、新能源发电功率预测与电力现货市场电价预测、计及新能源的中长期合约与现货日前市场的衔接与出清机制、电力现货市场各阶段市场的衔接与出清机制、碳交易权市场与电力现货市场的耦合机制等多个方面展开研究。本文主要研究成果与创新如下:(1)对新能源参与对电力现货市场的影响进行研究,基于电力现货市场价格信号的复杂性,构建由三个模块构成的新能源对电力现货市场影响分析模型,包括基于数据统计的相关性分析、基于小波变换与分形理论的全部特征值分析与基于关键因素提取的相关性分析。以丹麦两地区现货市场的历史数据进行验证,证实新能源发电对于电价影响高于常规历史数据;基于小波变换分析与分形理论求得全部特征值方法,计算两地区分类准确率为分别为80.35%,82.30%,分类结果表明负荷、新能源发电量序列与新能源发电量占比分类错误率较高;通过关键特征提取的相关性分析结果,重要程度位于前三的因素均存在新能源发电相关因素。因此研究中仅考虑负荷等常规因素不足以支撑电力现货市场电价预测、交易匹配与出清问题的研究。(2)对电力现货市场中新能源发电功率与电价预测进行研究,构建基于完全集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与样本熵(sample entropy,SE)的数据预处理策略,基于和声搜索(harmony searchm,HS)算法优化的核极限学习机(kernel extreme learning machine,KELM)的混合新能源发电功率预测模型,基于相似日筛选与长短期记忆模型(long short-term memory,LSTM)的电力现货市场电价预测模型。针对非线性、非稳态的短期新能源发电功率预测,首先通过皮尔森相关系数筛选模型输入数据,减少数据冗余;而后,采用CEEMD-SE的组合数据预处理策略,对发电功率时间序列进行分解和重构,消除数据噪声,减少模型计算量;其次,采用HS-KELM模型对重构后的多个子序列进行建模预测,集成处理后得到最终的新能源发电功率预测值。基于CEEMD-SE-HS-KELM新能源发电功率预测模型具有更高的预测精度。针对电力现货市场电价预测,将新能源出力指标纳入电力现货市场电价预测中,首先采用CEEMD-SE对电价序列进行分解与重构;而后,构建基于随机森林(random forest,RF)与改进灰色理想值逼近(improved approximation ofgrey ideal values,IAGIV)的新能源出力影响量化模型,筛选出与待预测天数关联性较强的历史天作为输入集;其次,采用LSTM模型对重构后的多个子序列分别进行预测,基于CEEMD-SE-RF-IAGIV-LSTM预测模型对于电价序列的拟合效果较好,可为电力现货市场参与主体制定交易策略、现货市场出清撮合提供支撑,降低电力现货市场中的风险。(3)对计及新能源与中长期市场影响的现货日前电力市场优化模型进行研究。本文提出计及中长期合约电量分解与新能源参与的日前电力市场交易优化模型,首先构建考虑火电厂合约电量完成进度偏差的中长期合约电力分解模型,将分解得到的每日中长期合约电量作为约束引入日前市场的优化模型中,保证中长期合约电量物理执行;针对系统不确定性进行建模,在电力现货市场价格模拟中加入新能源渗透率,更精准地刻画能源参与对于电力现货市场的影响;构建新能源参与的日前市场多目标出清优化模型,利用模糊优选方法对多目标进行转换,较好地平衡经济性与节能减排目标;最后采用基于GA-PSO组合优化模型对构建模型进行求解。模型求解结果表明,本文构建的多目标优化函数能够在保证系统运行经济效益的基础上,实现环境效益最大化,达到节能减排的效果;同时随着新能源渗透率的增加,系统不确定性增加,常规机组的成交电量有所下降。(4)对计及新能源的日前市场与日内市场的衔接机制进行分析,并构建相应的出清优化模型。在日前市场与实时市场之间增加日内市场,以减少系统辅助服务成本、降低用于平衡间歇性、波动性新能源的化石燃料容量、灵活性资源配置与储能成本,以提高现货市场效率,更好的发挥市场对资源优化配置的作用。采用基于模型预测结果与误差分布函数结合的不确定性刻画模型,而后构建了基于拉丁超立方采样进行场景集生成法与改进谱聚类分析的场景集削减策略,能够选择出最具代表性的场景集。基于电力现货市场出清流程,将含有新能源较多的系统将引入日内市场,以减小实时市场的功率偏差,提高系统运行的经济性和稳定性,采用预测模型对新能源出力、电力负荷进行预测,结合预测误差分布函数刻画系统不确定性;构建日前市场和模拟日内市场联合出清优化模型,在各个日内市场考虑对应实时市场新能源偏差功率的不确定性、电价不确定性,建立各日内市场和模拟实时市场联合优化模型。(5)考虑到中国“30·60”双碳目标与宏观发展规划,本文构建一个基于STIRPAT模型碳排放影响因素分析与改进烟花算法(improved fireworks algorithm,IFWA)优化的广义回归神经网络(general regression neural network,GRNN)预测模型。基于不同的社会环境与政策环境,对碳排放影响因素进行模拟并设定,预测结果表示中国的碳排放总量将于2031年达到峰值。以此为基础分析现行政策下中国的碳减排压力,并进行相应的建设全国统一的碳交易权市场必要性分析。而后,基于电力市场和碳市场的建设现状,利用系统动力学模型进行碳交易对电力现货市场的影响分析,系统动力学模型分析结果证实电力市场价格与碳交易价格呈现正相关关系;最后,基于对于碳交易对电力市场作用机理的分析,提出碳交易机制与电力现货市场机制协同建设建议。