SOI基集成光波导器件及表面粗糙度改善的研究
【摘要】:与传统材料不同,SOI特有的结构特点所带来的优势使其同时具有优异的光学性能和电学性能,且其工艺与CMOS工艺完全兼容,可以实现低成本SOI基集成光电子回路。不仅无源和有源光电子器件可以在SOI材料上制备,MEMS器件也可以做在SOI衬底上。SOI技术代表了微电子和光电子领域的的发展方向。本论文对SOI大截面脊形波导器件及其脊形波导侧壁表面粗糙度的改善进行了研究。
SOI光波导采用脊形波导结构可以实现大截面尺寸波导的单模传输。采用有效折射率方法(EIM)使三维脊形波导等效成二维平板波导,利用有限差分光束传输法(FD-BPM)获得SOI脊形光波导和标准单模光纤之间的模场失配损耗,优化结构参数,为最大限度降低耦合损耗提供依据。采用电感耦合反应离子刻蚀制备SOI脊形光波导器件,并给出了工艺流程。为减少SOI波导端面菲涅耳反射损耗,采用离子束增强沉积方法在波导端面制备了氮氧化物增透膜,大大降低了菲涅耳反射损耗。
本文介绍了矩形多模干涉耦合器的基本原理,以1×3干涉型SOI多模干涉耦合器为例,采用有效折射率方法和光束传播法(BPM)模拟了多模波导中的光场分布,分析了多模干涉耦合器的多模波导宽度及刻蚀深度的制作容差性。利用EIM方法和BPM方法模拟了两种新型结构的1×3SOI均衡光功率分配器的光场传输特性。
采用Payne和Lacey的理论公式计算和分析了SOI脊形波导侧壁表面造成的散射损耗。采用原子力显微镜直接测试了SOI脊形波导端面和侧壁的表面形貌,通过获得的表面均方根粗糙度估计了相应的散射损耗,并比较了两种不同刻蚀工艺对侧壁表面粗糙度的影响。通过氢退火、热氧化处理工艺研究了降低侧壁表面粗糙度的方法。氢退火、热氧化处理均能大幅度降低侧壁表面粗糙度。