收藏 | 论文排版


【摘要】:Elemental Carbon (EC), produced by incomplete combustion of fuels, presenting a continuum of a series of components including irregular carbon and micrographit carbon, is widespread in sediments. The study of EC is good for reconstruction of paleoclimate and understanding of vegetation dynamic evolution, because it records fire history well. We applied chemical method, and obtained the EC and δ ~13C_ec data successfully from the loess of Lingtai Section in Gansu province. EC records provide a new substituted proxy for paleoclimatic study of loess.The content of EC varies from 0.01%. to 0.43%., and the average value is 0.1 %. The maximum value appeared in layer SO with a depth of 1.42m and age of 5900aB.P, suggesting an obvious arid event at that time. The peaks of EC content always appear in paleosol layers, suggesting the climatic pattern of abnormal aridity would survive in warm and humid environment. There are EC peaks both in loess layers and paleosol layers since L2, indicating that the climate system maybe instable. Through all the sequence, EC peaks point out the climate transition from warm and wet to arid.Since the late Cenozoic, the value of δ ~13C_ec varies from -35.71% to -12.32%., and the average value is -20.95%. According to the equation between δ ~13C_ec and the relative content of C3/ C4, we concluded that there had been both C3 and C4 plant since the late Cenozoic, and majored in C3 plant in many of the time in the Chinese Loess Plateau. The most negative peak of δ ~13C_ec appeared in the interim of S5 and L5, and there were several obvious peaks of light value in layer S3, which indicated that there had been instable forest for a short time in the Chinese Loess Plateau. The most positive peak of δ ~13C_ec appeared in layer L9, the top layer of sandy loess, when C4 plants had a proportion of 100%,which indicated that the climate would be extremely cold and arid. In the bottom layer of sandy loess L15, the average value of δ ~13C_ec was a little positive, but there was a rather negative peak in some point. Although L9 and L15 were accumulated during the cold episodes, the climatic conditions to form them would not in the same, and the climatic condition in layer L15 was not as cold and dry as in layer L9, but had the similar feature with other loess layer. The formation of sandy loess could be associated with an increased dust supply in response to quick uplift of the Tibetan Plateau.The EC record presents cyclic change on the loess-paleosol timescale. The average value of EC in the Loess of Lingtai Section of interglacial stage is higher than that of the glacial stage. The 8 13Cec curve shows the same change, that is, the average value of 8 13Cec is weight in loess layers and light in paleosol layers. Generally speaking, in the climate condition of warm and wet, paleosol layers develop, and the vegetation is abundant and there are a lot of C3 plants, and then the fuel is accumulative and fires easily occur. On contrary, when the climate is cold and dry, the loess deposits, and the vegetation is rare with a lot of C4 plants relatively, and fires is not intensive because of little fuel accumulation. On glacial-interglacial timescale, the EC record can show the biomass change.The EC record in the Loess of Lingtai Section has obvious feature periodically. The EC abundance curve showing a phased increase in 1.8MaB.P., 1.2MaB.R, 0.8MaB.R, 0.13MaB.R, 0.02Ma B.P., is concordant with the change of dust flux velocity in Lingtai Section, which indicates that the increase of winter monsoon and aridity would be the reason. All these periods coincide with the uplift periods of Tibetan Plateau, such as QingZang movement(including three phases of 3.6 MaB.P.,2.5 MaB.P.,1.7 MaB.R), KunLun-Yellow River Movement(l.l MaB.R, 0.8 MaB.R, 0.6 MaB.R), and GongHe Movement(0.14MaB.P.),which indicates that the uplift of Tibet Plateau maybe the cause of increasing winter monsoon in East Asia and aridity in inner Asian showing by EC records. A sudden more weight change in 2.6MaB.P. and a sudden lighten change in 0.64MaB.P. of the 8 13Cec value coincide with changes of the summer monsoon. Winter and summer monsoon variations recorded by EC abundance and 8 13Cec respectively show three evolution stages, which are 7.2-2.6MaB.R, 2.6-0.64MaB.R, 0.64-OMaB.R respectively. In 7.2-2.6MaB.P. and 0.64-OMaB.R, the negative correlation between EC abundance and 8 l3Cec indicates the winter and summer monsoon increasing simultaneously. In 2.6-0.64MaB.R, the positive correlation between EC abundance and 8 I3Cec indicates the winter and summer monsoon alternating mutually.Since the late Cenozoic, the EC abundance in the Loess of Lingtai Section increases by the time and increases more quickly by the time, suggesting that fires are influenced by climatic changes and by the human activities in later time.The spectral analysis of the EC abundance curve and the 8 13Cec curve shows that they have the same periodicities in Quaternary Period and Tertiary Period respectively, indicating that there are similar factors controlling their changes. But taking a short duration 0-0.42Ma for example, the spectral analysis of the EC abundance curve and the 8 13Cec curve shows that they have different periodicities, indicating that they are controlled by different climatic factors on short timescale. Analyzing the periodic variation of EC record, we think that it is not only related with the long period climatic change driven by orbital factors but also with sudden changes in climate. In addition, the dominant periodicities of EC records varied in different stage, so EC records have different significance as a climatic proxy on different timescale.

中国期刊全文数据库 前20条
1 白凤龙;;世界最厚的黄土地层——兰州西津村黄土剖面研究[J];地质论评;1987年02期
2 张淑光;王玉;胡光荣;;新集黄土剖面中古土壤初步研究[J];水土保持研究;1987年01期
3 滕志宏;豫西两个黄土剖面及其地层划分[J];地层学杂志;1988年04期
4 岳乐平;蓝田段家坡黄土剖面古地磁结果[J];西北大学学报(自然科学版);1989年03期
5 胡碧茹;卢演俦;;洛川黄土剖面的粉砂与粘粒比值及粒度旋回[J];岩石学报;1989年01期
6 岳乐平;;兰田段家坡黄土剖面磁性地层学研究[J];地质论评;1989年05期
7 岳乐平,雷祥义,屈红军;靖远黄土剖面磁性地层的初步研究[J];第四纪研究;1991年04期
8 杨英,沈承德,沈承德,易惟熙,孙彦敏,刘东生;21ka以来渭南黄土剖面的元素碳记录[J];科学通报;2001年08期
9 雷祥义;;世界最厚的黄土地层——靖远黄土剖面研究进展[J];西北大学学报(自然科学版);1993年02期
10 庞奖励,黄春长;陕西五里铺黄土剖面中微量元素地球化学特征[J];长春科技大学学报;2001年02期
11 陈富斌,高生淮,陈继良,葛同明,梁春艳,樊利民,徐行;甘孜黄土剖面磁性地层初步研究[J];科学通报;1990年20期
12 白凤龙,朱文中;兰州西津村黄土剖面及磁性年代的确定[J];长安大学学报(地球科学版);1986年02期
13 牛彩香;雒昆利;;陕西蓝田段家坡黄土剖面地球化学元素特征及古气候效应分析[J];西北地质;2010年01期
14 刘强,刘嘉麒,刘东生;北京斋堂黄土剖面主要温室气体组分初步研究[J];地质地球化学;2000年02期
15 易惟熙,沈承德,钟红海,胡国辉,刘东生;西峰晚更新世黄土剖面高分辨元素记录[J];地球化学;1994年03期
16 孙湘君,宋长青,玉琫瑜,孙孟蓉;黄土高原南缘10万年以来的植被——陕西渭南黄土剖面的花粉记录[J];科学通报;1995年13期
17 康建成;李吉均;;甘肃临夏黄土剖面:15万年环境演变的良好记录[J];地质论评;1993年02期
18 贺秀斌;20万年来黄土剖面土壤发生学特征与侵蚀环境演变[J];土壤侵蚀与水土保持学报;1999年02期
19 滕志宏,郭爱莲;陕西蓝田黄土剖面中的微生物初步研究[J];高校地质学报;1996年02期
20 文启忠,刁桂仪,贾蓉芬,周厚云;黄土剖面中古气候变化的地球化学记录[J];第四纪研究;1995年03期
中国重要会议论文全文数据库 前10条
1 高金城;李柏年;方小敏;张林源;艾南山;陈尚文;王明珍;;兰州九州台黄土剖面粘土矿物的电镜初步研究[A];第四次全国电子显微学会议论文摘要集[C];1986年
2 夏敦胜;陈发虎;刘秀铭;贾佳;魏海涛;;西天山地区典型黄土剖面磁学特征及其环境意义研究[A];中国地球物理·2009[C];2009年
3 孙玉兵;陈天虎;谢巧勤;;西峰黄土剖面碳酸盐变化及其古气候记录意义[A];中国矿物岩石地球化学学会第11届学术年会论文集[C];2007年
4 贺秀斌;唐克丽;;黄土高原植被建造潜势及其途径[A];Management of Ecological Environment in the Loess Plateau of China--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
5 陈蕴;王喜生;裴军令;;北京邻区矾山黄土剖面的古地磁新结果[A];中国地球物理学会第二十七届年会论文集[C];2011年
6 ;水文地质工程地质研究所 成果简介[A];中国地质科学院文集(1982中英文合订本)[C];1985年
7 赵景波;;第四纪气候变化对黄土地下水富集的影响[A];中国地理学会2007年学术年会论文摘要集[C];2007年
8 吴海斌;郭正堂;方小敏;张家武;陈发虎;;250kaBP前后中国北方干旱区的扩张及其原因[A];中国科学院地质与地球物理研究所2002学术论文摘要汇编[C];2002年
9 杨肖肖;孔昭宸;姜文英;杨石岭;;末次盛冰期以来渭源黄土剖面的孢粉记录[A];中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——新生代地质与环境研究室[C];2013年
10 郑祥民;赵健;周立;;东海岛屿风尘沉积与环境信息[A];海峡两岸地理学术研讨会暨2001年学术年会论文摘要集[C];2001年
中国博士学位论文全文数据库 前6条
1 周斌;晚新生代以来灵台黄土剖面元素碳记录与气候环境变化[D];中国科学院研究生院(广州地球化学研究所);2005年
2 杨英;近十五万年以来渭南黄土剖面的元素碳记录[D];中国科学院广州地球化学研究所;2000年
3 彭先芝;黄土剖面中微生物与有机质的古气候记录——趋磁细菌对磁化率的贡献及其特征生物标志物研究[D];中国科学院广州地球化学研究所;2000年
4 梁烨;MIS11阶段以来亚速海地区Chumbur-Kosa黄土剖面记录的古气候变化[D];兰州大学;2016年
5 黄传琴;黄土剖面粘粒矿物的组成特征及其环境意义[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2011年
6 傅建利;黄河三门峡段地貌发育与环境演变[D];中国地质科学院;2009年
中国硕士学位论文全文数据库 前10条
1 孙忠戈;吉林敦化黄土剖面土壤发生及地球化学元素特征研究[D];沈阳农业大学;2016年
2 昝立宏;陕西蓝田公王岭黄土剖面古气候特征研究[D];中国地质大学(北京);2005年
3 栗粲圪;泾川黄土剖面松山—布容古地磁极性倒转记录的可靠性探讨[D];中国地质大学(北京);2016年
4 刘海龙;西峰及洛川黄土剖面地层击实特性研究[D];长安大学;2014年
5 李强;山东潍坊朱里黄土剖面光释光年代及环境意义[D];山东师范大学;2014年
6 孙和平;晚第四纪平阴地区黄土剖面粒度特征及其环境意义[D];山东师范大学;2013年
7 丁新潮;山东章丘黄土剖面与砣矶岛黄土剖面沉积特征的对比[D];山东师范大学;2016年
8 柏松;岷江上游干旱河谷黄土剖面的土壤发生特征及其古环境意义[D];四川大学;2005年
9 丁军友;渭南吴田黄土剖面地层CBR值分布规律研究[D];长安大学;2013年
10 张运;甘肃西峰黄土剖面磁性地层学研究[D];中国地质大学(北京);2016年
中国重要报纸全文数据库 前1条
1 本报记者 姚志伟;从这里读懂地球[N];陕西日报;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978