润滑材料数据库平台设计及机器学习性能预测方法研究
【摘要】:我国对高品质润滑油的需求量占润滑油总需求量正逐年上升,而高品质润滑油的设计及开发技术严重依赖国外,自主研发面临很大困难。在润滑油产品的开发与改进中,性能检测与评价是必不可少的重要环节,我国润滑油性能评价主要依靠经验或大量实验与数据分析的现状严重制约着润滑油的设计与开发周期,致使润滑油发展十分缓慢。将材料数据库与机器学习相结合是润滑材料研发的新方法,为润滑油的性能快速评价提供了一种新的途径,对于提升装备运行可靠性以及指导润滑油开发与应用具有重要意义。本文以典型润滑油及其添加剂为研究对象,通过构建包括试验测试与模拟计算等多样化数据存储与分析数据库,建立数据的自动录入、检索,模拟计算及性能预测一体化数据平台;基于分子模拟计算,分析润滑油及其添加剂分子的结构参量与性能之间的关联规律;确定润滑油分子参量对摩擦学性能和热氧化性能的影响权重,结合机器学习算法,建立润滑油分子结构-性能机器学习模型,研究不同机器学习模型对润滑油热氧化性能和摩擦学性能预测的准确性与适用性,并提出了一种精确、稳定的性能预测集成学习算法,通过将润滑材料数据库与机器学习相结合,为高性能润滑油的开发提供有力证据。基于上述研究工作,论文的主要结论如下:(1)设计了润滑材料数据存储与数据分析一体化平台,实现了润滑材料试验检测数据与模拟计算结果文件等多样化数据导入;建立了基于不同数据格式(表格、文档)之间转换与关键信息提取的数据检索功能;集成了支撑材料快速评价的模拟计算软件调用以及性能预测等模块。该数据库涵盖商用润滑油、基础油、添加剂、润滑脂、固体润滑膜等,数据内容包括了润滑油及其添加剂的化学结构式、材料的物性参数、试验参数和材料主要性能等,满足高通量计算设计结果的归纳与数据挖掘的需要,为润滑材料性能的快速评价提供数据基础及分析开发平台。(2)以四种典型酯类油(双酯、季戊四醇酯、三羟甲基丙烷酯和偏苯三酸酯)为研究对象,开展了不同链长结构的酯类油分子参量模拟计算,分析了酯类油分子的成键性质、化学活性、分子轨道等对其使役性能的影响规律。结果表明:不同酯类油的分子总能量和偶极矩存在明显差异,是影响酯类油抗氧化性、水解稳定性和润滑性等宏观性质的重要参数。HOMO-LUMO能级结果表明,酯类油分子结构中酯基(或苯环与酯基形成的共轭结构)的活性最高,在润滑金属的过程中,酯类油会在金属表面吸附形成一层固体润滑膜,保证了良好的摩擦性能,适当增加双酯分子两端碳链长度,可提高其抗磨性能。静电势结果表明,酯基中的C=O键呈负电性,易与金属阳离子结合或被水中的H+攻击,使其分子结构发生破坏,影响润滑或水解稳定性。电子结构结果阐明了酯类油的分子轨道贡献与分布。模拟计算结果可为机器学习筛选出的特征参量重要性的原因提供科学解释。(3)基于分子模拟计算的润滑油分子结构参量,计算了润滑油结构参数相对于磨损量的影响权重,确定润滑油分子特征参量为:低轨道能量和偶极矩;同样,根据润滑油结构参数相对于起始氧化温度的影响权重,确定润滑油分子特征参量为:分子能量、低轨道能量、HOMO-LUMO能量、偶极矩、脂水分配系数。之后,结合多元线性回归机器学习方法,开展了润滑油的摩擦学性能预测和抗氧化性能预测方法的初步研究,建立了润滑油计算特征参数与磨损量之间、计算特征参数与氧化起始温度之间的机器学习模型,并将预测集代入模型中进行了准确性验证,结果表明,模型预测值与试验值具有较高的一致性。(4)基于多元线性回归、支持向量机和神经网络机器学习算法,开展了润滑油材料的摩擦学性能和抗氧化性能预测研究,阐明了不同机器学习方法对于润滑油性能预测的差异性。在此基础上,探索了基于Stacking理论的润滑油机器学习性能预测集成学习算法,提出了一种基于机器学习的润滑油摩擦学性能集成学习预测方法,最终建立了润滑油摩擦学性能精准预测系统,丰富和完善了润滑材料数据库功能,提升了润滑油性能评价技术,加快润滑油的研发及应用进程。