收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

含噪盲源分离算法研究及其在水声信号中的应用

吴微  
【摘要】:盲源分离是指在各个源信号均未知的情况下,根据某种条件和假设,从混合的观测信号中分离出这些源信号的方法。在过去的几十年中,盲源分离技术由于其潜在的应用价值得到了众多学者的关注,发展迅速。在实际应用中,无论是通信信号、语音信号、医学信号还是水声信号等等都不可避免地会被各种形式的噪声和干扰影响。大多数盲源分离算法在没有噪声时具有最优的性能,当观测信号受到噪声污染时其性能会急剧下降,严重时可能导致分离失败。由于无法获得更多关于源信号的先验信息,并且信道参数未知,使得含噪盲源分离问题较无噪时的盲源分离问题更加复杂。目前,对含噪盲源分离问题的研究成果相对较少。本文紧紧围绕含噪盲源分离问题进行深入研究,主要对基于偏差去除的含噪盲源分离算法和基于去噪的含噪盲源分离算法两部分内容进行了研究,取得了一定的成果,最后将含噪盲源分离算法应用于水声信号中,验证了含噪盲源分离算法对水声信号盲分离的有效性和可行性。本文的主要工作概括如下:1.研究了盲源分离算法中的源信号数目估计问题,针对已有的源数估计算法在信噪比较低时的性能较差的问题,提出了一种基于奇异值分解的转折点检测算法,实验结果表明该算法提升了低信噪比时的估计性能。对Fast ICA和RobustICA这两种算法的性能进行了详细的分析和比较,分别针对亚高斯源、超高斯源以及由亚高斯源和超高斯源组成的混合源在不同信噪比以及不同采样点数的情况下进行了仿真实验,结果表明总体而言Robust ICA算法的性能更加稳健。2.对基于偏差去除的含噪盲源分离算法进行了研究。针对盲源分离超定模型提出了基于特征值分解的准白化FastICA算法,该算法通过特征值分解获得噪声方差的估计,从而可以对含噪信号中的有用信号进行白化,去除噪声引入的偏差,同时降低信号空间的维数,将超定模型转化为正定模型。进一步针对每路含噪混合信号的信噪比不完全相同的情况,提出了一种基于迭代的二次白化FastICA算法,该算法能够准确估计出每路混合信号的噪声方差,从而更准确地去除噪声引入的偏差,使得对有用信号的白化更加有效。仿真实验表明了这两种算法解决含噪盲源分离问题的有效性。3.研究了去噪算法与盲源分离算法相结合的策略,目前主要有去噪预处理、去噪后处理以及去噪预处理与后处理的级联方式。本文对去噪预处理的算法进行了深入研究,并讨论了去噪预处理与后处理的级联方式下的含噪盲源分离问题的解决策略。由于已有文献中提出的串行级联方式和并行级联方式没有充分利用分离算法得到的分离矩阵以及分离出的估计信号,本文提出了一种改进的预处理与后处理的并行级联方式,该方式同时使用了并行级联方式中的两路输出信号,充分利用了能够获得的有用信息,在进行去噪后处理之前先提高了含噪信号的信噪比,从而减小了去噪后信号的失真程度。实验仿真表明该方法较已有的串行和并行两种级联方式的分离性能更优。4.对小波去噪算法作为去噪预处理算法进行了深入研究。针对较低信噪比条件下小波去噪算法性能不佳的问题提出了改进的基于平移不变量的小波去噪算法,该算法对小波去噪算法中的关键参数进行了优化,并提出了一种更加稳健的噪声方差估计算法——高频系数滑动窗口法,同时缩小了平移不变量的范围,在减少运算量的同时去噪效果几乎没有降低。将该去噪算法作为去噪预处理应用于含噪盲源分离问题中,仿真实验验证该算法的有效性。针对高斯色噪声的去噪问题,提出了一种小波去噪算法,该算法使用改进的分层gcv阈值估计算法,将其应用于含有高斯色噪声的盲源分离问题,仿真实验证明了该算法能够更加有效去除高斯色噪声,提升盲源分离算法的性能。5.对基于经验模态分解的去噪算法作为去噪预处理算法进行了研究。针对传统的经验模态分解去噪算法存在的去噪不彻底以及有用信号被当作噪声滤除的问题,提出了一种分段emd阈值去噪算法,该算法首先使用平均周期法将经验模态分解得到的若干个本征模态函数分成噪声主导部分和信号主导部分,对噪声主导部分使用已有文献中的阈值估计算法,对信号主导部分使用新的下降更快的阈值估计算法,然后使用改进的阈值收缩算法对每个本征模态函数进行阈值收缩处理,重构信号。该算法能够克服已有算法的缺点,具有更好的去噪性能。将该算法应用于含噪盲源分离中,能够显著提升盲源分离算法的性能。接下来研究了高斯色噪声条件下基于经验模态分解的去噪算法。研究发现,同高斯白噪声相比,高斯色噪声经过经验模态分解后第一个imf分量的幅值相对较小,其余幅值下降速度相对平缓,根据高斯色噪声的这些特性对已有的阈值算法中的参数进行调整,同时采用了分段阈值估计算法,将该去噪算法应用于含有高斯色噪声的盲源分离问题中,实验结果证明了该算法的有效性。6.研究了含噪盲源分离算法在水声信号处理中的应用。由于计算机仿真信号在科研中具有特殊的优势,本文首先对海洋环境噪声、水声测试信号、水声通信信号以及舰船辐射噪声进行模拟仿真,然后分别针对盲源分离的正定模型和超定模型进行了仿真实验。对正定模型而言,主要使用了针对高斯色噪声的基于分层gcv阈值估计的小波去噪算法和基于分段emd阈值去噪算法这两种算法作为去噪预处理,然后使用robustica算法进行分离,仿真实验验证了这两种算法能够有效去除水声信号中的海洋环境噪声,显著提升盲源分离算法的性能。同时还讨论了算法性能同采样率之间的关系,实验表明,由于提高采样率能够改变噪声在有用信号宽带内的分布从而有助于提升去噪算法的性能,进一步提升盲源分离算法的性能。针对超定模型,主要使用了本文提出的两种基于偏差去除的含噪盲源分离算法:基于特征值分解的准白化fastica算法和基于迭代的二次白化fastica算法。仿真结果表明,直接使用fastica算法,对于水声通信信号,snr32db时分离得到的信号均方误差降至10~(-2)数量级,使用本文提出的算法,SNR14dB时信号的均方误差就已降至10~(-2)数量级;对于舰船辐射噪声,SNR22dB时分离得到的信号均方误差降至10~(-2)数量级,使用本文提出的算法,SNR10dB时信号的均方误差就已降至10~(-2)数量级。因此在含有噪声条件下本文提出的算法能够获得令人满意的分离效果。同时验证了采样率的提升对于基于偏差去除的分离算法的性能几乎没有影响,这是因为该算法不受噪声分布状态的影响,因此该算法对于含噪条件下的水声信号盲分离十分有效。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 李广彪,张剑云,毛云祥;盲源分离的发展及研究现状[J];航天电子对抗;2004年06期
2 王昆;;盲源分离问题的分析研究[J];科技信息;2008年29期
3 柯维;张永祥;吕博;;基于微分进化算法的盲源分离[J];海军工程大学学报;2012年05期
4 林秋华,殷福亮;盲源分离自适应算法的统一形式[J];大连理工大学学报;2002年04期
5 刘海林;谢胜利;章晋龙;;微延迟病态卷积混叠盲源分离的可分性研究[J];计算机科学;2003年07期
6 吴微东,庄哲民;基于盲源分离的一种快速独立分量分析算法[J];汕头大学学报(自然科学版);2004年02期
7 郭松;孙云莲;;基于独立分量分析盲源分离快速算法[J];电子测量技术;2004年02期
8 丁铎,贾永强,王映民;一种基于峰度的盲源分离算法研究[J];现代电子技术;2005年14期
9 肖俊,何为伟;源信号数目大于观察信号数目情况下的盲源分离[J];现代电子技术;2005年11期
10 李广彪,张剑云,毛云祥;盲源分离中的非高斯性极大准则[J];舰船电子对抗;2005年05期
11 李著成;张立毅;;一种新的自适应步长盲源分离算法[J];现代电子技术;2005年24期
12 牛龙,马建仓,王毅,陈海洋;一种新的基于峰度的盲源分离开关算法[J];系统仿真学报;2005年01期
13 李广彪;张剑云;;基于变步长等变化自适应盲源分离算法[J];电子信息对抗技术;2006年01期
14 汤影;康戈文;;盲源分离中信号独立性的讨论[J];现代电子技术;2006年04期
15 徐尚志;苏勇;叶中付;;多种概率分布源的盲源分离快速算法[J];中国科学技术大学学报;2006年05期
16 牛奕龙;王英民;王毅;;一种改进的自适应不完整自然梯度盲源分离算法[J];模式识别与人工智能;2006年05期
17 赵知劲;解婷婷;李小平;赵治栋;;一种小波域盲源分离算法[J];西安电子科技大学学报;2007年03期
18 邓娟;李宏;;一种基于信息最大化的自适应变步长盲源分离算法[J];电子测量技术;2007年06期
19 陶磊;张昀;;基于独立分量分析的盲源分离研究[J];广东通信技术;2007年07期
20 苏中元;贾民平;;周期平稳信号盲源分离算法及其应用[J];机械工程学报;2007年10期
中国重要会议论文全文数据库 前10条
1 李舜酩;;转子振动信号的盲源分离研究[A];第三届全国虚拟仪器大会论文集[C];2008年
2 许林周;章新华;范文涛;;一种盲源分离后续去冗余方法[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
3 韩少博;林京;吴文焘;;频域盲源分离中的一种稳健解排列模糊方法[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
4 章林柯;何琳;江涌;;基于盲源分离的潜艇源识别信号去除干扰研究[A];第十一届船舶水下噪声学术讨论会论文集[C];2007年
5 康春玉;章新华;李军;;盲源分离与自适应滤波器结合抑制强干扰研究[A];2012'中国西部声学学术交流会论文集(Ⅱ)[C];2012年
6 周祥;樊涛;;基于盲源分离的储油罐底腐蚀混叠信号的识别与分离[A];第八届沈阳科学学术年会论文集[C];2011年
7 王颖翠;;一种基于自然梯度的卷积混合频域盲源分离算法[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
8 许策;章新华;高成志;;源数目估计对盲源分离算法影响分析[A];2007年全国水声学学术会议论文集[C];2007年
9 成谢锋;张仲;孙夏;;一种单路混合信号的盲源分离新方法[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
10 胡增辉;朱炬波;;基于盲源分离的波达角估计[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
中国博士学位论文全文数据库 前10条
1 张良俊;欠定盲源分离算法及其应用研究[D];武汉理工大学;2015年
2 吴微;含噪盲源分离算法研究及其在水声信号中的应用[D];解放军信息工程大学;2014年
3 徐先峰;利用参量结构解盲源分离算法研究[D];西安电子科技大学;2010年
4 王尔馥;盲源分离理论及其在通信系统中的应用[D];哈尔滨工业大学;2009年
5 李昌利;盲源分离的若干算法及应用研究[D];西安电子科技大学;2010年
6 高建彬;盲源分离算法及相关理论研究[D];电子科技大学;2012年
7 郭靖;盲源分离的时频域算法研究[D];重庆大学;2012年
8 张念;盲源分离理论及其在重磁数据处理中的应用研究[D];中国地质大学;2013年
9 刘建强;非平稳环境中的盲源分离算法研究[D];西安电子科技大学;2009年
10 李灯熬;基于循环平衡理论的盲源分离算法[D];太原理工大学;2010年
中国硕士学位论文全文数据库 前10条
1 彭帆;多输入多输出系统盲源分离频域新方法的研究[D];汕头大学;2002年
2 程舒慧;动态盲源分离及其在生物医学信号处理中的应用研究[D];安徽大学;2011年
3 张政;基于独立分量分析的盲源分离算法优化研究[D];南京信息工程大学;2015年
4 高鹏;基于单通道盲源分离理论的故障特征提取技术[D];长安大学;2015年
5 姚鑫;基于EEMD的单通道盲源分离研究与应用[D];大连交通大学;2015年
6 张颖;低角雷达盲信号分离方法研究[D];河南师范大学;2015年
7 吴康锐;基于空间几何信息约束的欠定卷积盲源分离[D];南昌大学;2015年
8 李莽;盲源分离在信号探测中的应用[D];电子科技大学;2014年
9 宋继飞;噪声条件下欠定盲源分离算法研究[D];大连理工大学;2015年
10 甘一凡;基于盲源分离的车辆检测与分类技术研究[D];电子科技大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978